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Due to environmental and geopolitical reasons, many countries are embracing electric vehicles as an 

alternative to gasoline powered automobiles. There are other alternative fuels such as Compressed 

Gas and Hydrogen Fuel Cells that have also been tested for replacing gasoline powered vehicles. 

However, since the associated refueling infrastructure of alternative fuel vehicles is sparse and is 

gradually being built, the distance between refueling points becomes a crucial attribute in attracting 

drivers to use such vehicles.  Optimally locating refueling points (RPs) will both increase demand and 

help in developing a refueling infrastructure.   

This paper introduces a new set of location problems related to locating refueling points on lines and 

tree networks. It first deals with the simplest case of locating refueling points on a line, where origins 

can be anywhere on the line and destinations can be anywhere on the line. First, problems of 

feasibility are studied. Given there are feasible locations, then the location problem becomes "where 

should RPs be located to minimize a given fuel-related objective".  For example the objective of 

minimizing the maximum distance between RPs minimizes the anxiety for the drivers. Scenarios 

include single one-way Origin-Destination (O-D) pair, multiple one way O-D pairs, round trips, etc. 

Extensions to tree networks are discussed.  

1. Background 

Suppose we wish to locate n  RPs in a place where there are none currently. The problem of optimally 

locating such refueling stations has been investigated by Kuby and collaborators [e.g. Kuby and Lim 

2005, Kuby and Lim 2007, Upchurch, Kuby and Lim 2009, Lim and Kuby 2010, Capar, Kuby and 

Rao, 2012]. Typically, they use modifications of flow capturing or flow interception models 

[Hodgson 1990, Berman Larson and Fouska 1992, Rebello, Agnetis and Mirchandani 1995], to cover 

as many O-D routes as possible with a given number of stations.  However, these models do not take 

into consideration the likely possibility of vehicles making detours to refuel.  

Cabral et al. (2007) considered a network design problem with relays (NDPR) in the context of 

telecommunication network design and proposed a column generation scheme and four algorithms. 

Konak (2012) also studied NDPR and proposed a set covering formulation with a meta-heuristic 

algorithm. However, these models only choose vertices to locate relays, which normally will not be 

optimal in many cases as will be shown below.   
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Routing Issues 

Taking a trip, especially one through sparsely populated areas, requires the driver to plan when the 

vehicle will need to be refueled. Given the abundance of gasoline stations for standard vehicles, a 

driver usually considers refueling only when the fuel tank is low. In the case of range-limited vehicles 

(RLV), planning when to refuel is important, since there are few places to refuel because, at least 

initially, RPs would be few and far in between. Therefore, one needs to develop models which look 

for the routes that include detouring RPs if necessary. Objectives for such models could be to (a) 

minimize the total detouring distances and (b) minimize the total number of refueling stops. It is 

surprising that detouring is not a consideration in these models. In fact, detouring plays a major role in 

the problems been analyzed in this research. Finding routes in a network considering refueling detours 

have been studied by, among others, Ichimori, 1981; Smith et al, 2012; Laporte and Pascoal, 2011; 

and Adler and Mirchandani, 2014. 

2. Some Location Problems on a Line 

A prototypical location problem that needs consider refueling detours is to locate RPs to minimize the 

total detour distance for given discrete O-D demands. The following models are trying to locate 

minimum number of RP stations and do not consider any stop limitation.  

2.1 One-way problems 

We begin by considering the simplest special case where we have RLVs for one-way trips between 

any two points along a road. Suppose that our RLV starts its trip with a full battery. Let 𝑟 denote the 

maximum distance that our fully charged RLV can travel before refueling, and let L  denote the 

length of the road between two endpoints, where 𝐿 > 𝑟.  

 

 

Figure 1 Simple illustration for line locations 

Let’s illustrate how to find feasible RPs’ locations along a road with two points only. If 2𝑟 < 𝐿 < 3𝑟 , 

we need to locate two RPs, where the first one falls in the interval [𝐿 − 2𝑟, 𝑟], and the second one 

falls in the interval [𝐿 − 𝑟, 2𝑟]. However, this does not mean that choosing two points arbitrarily from 

the above two intervals will constitute a feasible solution since distance between two RPs has to be 

less than or equal to 𝑟.  

 

Figure 2 Refueling points localization intervals 

If we need to locate n  RPs, the location intervals should be: 

𝑥1 ∈ [𝐿 − 𝑛𝑟, 𝑟] 

𝑥2 ∈ [𝐿 − (𝑛 − 1)𝑟, 2𝑟] 

⋮ 

𝑥𝑛 ∈ [𝐿 − 𝑟, 𝑛𝑟]. 
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Proposition 1: If one-way trips with the longest travel distance can be satisfied, then all O-D demands 

can be satisfied. 

Proof: Provided in full paper. 

Proposition 2: The minimum number of RP stations we need to locate is 

𝑝 = {
⌊

𝐿

𝑟
⌋ 𝑖𝑓 𝑚𝑜𝑑(𝐿, 𝑟) ≠ 0 

⌊
𝐿

𝑟
⌋ − 1 𝑖𝑓 𝑚𝑜𝑑(𝐿, 𝑟) ≡ 0

, equivalently, 𝑝 = ⌈
𝐿

𝑟
⌉ − 1.    

Proof: Provided in full paper. 

Proposition 3: Given any feasible solution, total detour distance is 0, that is, total weighted demand is 

constant. Therefore each feasible solution is optimal. 

Proof: provided in full paper. 

2.2 Round trip problems  

We now consider the case where vehicles go for round-trips between any two points along a road. Let 

triple (𝑣𝑖, 𝑣𝑗, 𝑣𝑖) represent a round-trip demand, that is, a vehicle starts at 𝑣𝑖, goes to 𝑣𝑗 and goes back 

to 𝑣𝑖. Proofs for propositions below will be given in the full paper 

Proposition 4: If the round-trip triples (𝑣1, 𝑣𝑛, 𝑣1) and (𝑣𝑛, 𝑣1, 𝑣𝑛) can be refueled, then each round-

trip triple (𝑣𝑖, 𝑣𝑗, 𝑣𝑖) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 can be refueled with possible detours. 

Proposition 5: The minimum number of refueling stations needed to serve all round-trip triples is 

 𝑝 = ⌈
𝐿

𝑟
⌉. 

Locating stations to minimize total travel distanace can be formulated as a mixed integer quadratic 

mathematical program (not shown here), where the location varaibles are continuous on the line, the 

assignment of refuenig points to trips are 0-1 binary varaibles, and the objective is quadtratic because 

it has terms where continuous varaibles are multipled by 0-1 variables. The problem can be solved by 

MATLAB by using OPTI toolbox. 

3. Some Location Problems on a Comb-Tree – the one-way cases 

We consider a prototypical location problem on a small tree shown below. By a small tree we mean 

that one single RP is sufficient to serve all O-D demand pairs (see Fig 3). Consider the tree below: 

there are six ordered O-D pairs in total, and we consider one-way problem for these O-D pairs. 

 

Figure 3 An example of a small tree problem 
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The breakpoints 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1 and 𝐶2 are such that the distances 𝐴𝐴1, 𝐴𝐴2, 𝐵𝐵1, 𝐵𝐵2, 𝐶𝐶1 and 

𝐶𝐶2 are all equal to the range limit 𝑟. The bold segments, which constitute a subtree, represent the 

intersection of all paths between these breakpoints. Note that the RP must be located on this subtree, 

and all O-D demand pairs can be served with possible detouring. Otherwise, if we locate the RP 

beyond this subtree, then only one RP cannot serve all O-D pairs.  Specifically, if our objective is to 

minimize the total detouring, then the junction node 𝐽 is the only optimal location to achieve zero 

detouring.  

We consider a more general comb graph, where each leaf node serves as both origin and destination 

(see Fig 4). 

 

 

 

Figure 4 A comb graph 

3.1 Minimum number of refueling stations needed 

To find the minimum number of refueling stations needed, we first trim the graph: starting from each 

leaf node (e.g., A, B, C, …), we locate a refueling station every 𝑟 distance until we are within 𝑟 

distance to the corresponding junction node. After trimming, we get a new graph, where the length of 

each branch is strictly less than 𝑟, and each leaf node may or may not have a refueling station (see Fig 

5).  

 

 

Figure 5 Localization comb subgraph after trimming 

Then for this trimmed tree, we can proceed from leaf to right finding breakpoints (BPs) and can 

develop a greedy algorithm that locates the minimum number of refueling points. (The algorithm and 

proof will be avaiable in the full paper.) 

3.2 Optimal locations of the minimum number of refueling stations  

Although this approach provides the minimum number of refueling points for feasibility, locating 

these points optimally over the comb subgraph is not easy. Currently the research team is developing 

an algorithm to find these optimal locations. 

4. Conclusions and Future Research 

This extended abstract introduces some new problems of locating refueling points on a line and comb-

tree networks where O’s and D’s could be anywhere on the network. In special cases, after locating 

optimally, no detouring is necessary. However, in general, detouring is necessary when one needs to 

consider round trips between the O’s and the D’s, and when there is an underlying tree structure. In 
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the full paper to be given at the conference, complexity results for problems on optimally locating on 

a tree will provided and exact and heuristic algorithms for these problems will be evaluated.  
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Abstract. In the past 5 years Electric Car use has grown rapidly, almost doubling each year. To provide
adequate charging infrastructure it is necessary to model the demand. In this paper we model the distribution
of charging demand in the city of Amsterdam using a Cross-Nested Logit Model and sociodemographic
statistics of neighborhoods.

Keywords: Electric Vehicle, Charging Demand, Discrete Choice Model, Cross-Nested Logit

1 Introduction

We tackle the question of estimating eletric vehicle (EV) charging demand on public charging stations using
the multinomial, nested, and cross-nested logit models. These models use certain sociodemographic statistics of
neighborhoods to estimate their share of the charging demand of the whole city. The multinomial logit model is
a restricted version of the nested logit model, which in turn is a restricted version of the cross-nested logit model.
The cross-nested logit model far outperforms the others.

2 Literature review

Many articles have been written about optimizing charging infrastructure based on demand, though this demand
is often an unknown. Different researchers have dealt with estimating and measuring this in different ways.
Dong, Liu and Lin[1] base their model on the multiday driving data collected from 445 instrumented gasoline
vehicles in the Seattle metropolitan area. Tu, Li, Fang, Shaw, Zhou and Chang[2] use taxi GPS data to estimate
demand. Liu[3] assesses the power grid impact if 10% of vehicles were EVs. Jung, Chow, Jayakrishnan and
Park[4] model taxi service demand as a Poisson process based on an EMME/2 transportation planning model
developed at the Korea Transportation Institute (KOTI). Wang, Wang and Lin[5] optimize charging strategies
and charging station placements based on a randomly generated EV network. He, Kuo and Wu[6] optimize
charging station location in Beijing, using three classic facility location models. EV demand is estimated using 6
socio-demographic attributes deemed important by the literature, which were then ranked by 11 interviewees.
Van den Hoed, Helmus, de Vries and Bardok[7] analyse the data of charging behavior in Amsterdam, using
the same data we use. We use a statistical model to estimate demand in Amsterdam based on a number of
socio-demographic attributes.

3 Methods and Data

Our data consists of statistics about the neighborhoods of Amsterdam from the Central Bureau of Statistics
(CBS) and records of every instance of an EV charging at a public station in Amsterdam from the Charge
Infrastructure Efficiency Model (CHIEF) dataset. We used the program BIerlaires Optimization package for GEV
Models Estimation (BIOGEME), a specialized log-likelihood maximizer,to estimate multinomial, nested, and
cross nested logit models to predict the probability of an EV driver choosing to charge in a particular neighborhood.

3.1 Model description

The logit models are based on the principle of utility maximization, where the choicemaker simply chooses the
alternative with the highest utility, the utility Ui of an alternative i is given by Vi + εi = β · xi + εi, where β is a
vector of parameters to be estimated, xi is a vector of properties of alternative i and εi is a random variable
with a standard Gumbel distribution. In the case of the multinomial logit model (MNL), all ε are iid. So Ui are
independently distributed Gumbel(Vi, 1), which makes maxj 6=iUj distributed Gumbel(ln(

∑
j 6=i e

Vj ), 1). So the
probability that Ui > maxj 6=iUj is:

Pi =
eVi∑
eVj

(1)



In the nested logit model (NL), there is a partition on the alternatives {N1, ..., Nk} the εi are independent if they

are in different nests, but within the nest the shared cumulative distribution is given by exp

(
−
(∑

j∈Nm
e−εjµm

)1/µm
)

.

This leads to probabilities

Ṽm =
1

µm
ln

 ∑
j∈Nm

eVjµm

 (2)

P (Nm) =
eṼm∑
eṼn

(3)

P (i|Nm) =
1i∈Nme

Viµm∑
j∈Nm

eVjµm
(4)

The cross nested logit (CNL) allows alternatives to lie in multiple nests at the same time with αim denoting the
degree of alternative i lying in nest m, with

∑
m αim = 1 for all i. This leads to probabilities

Ṽm =
1

µm
ln

∑
j

αjme
Vjµm

 (5)

P (Nm) =
eṼm∑
eṼn

(6)

P (i|Nm) =
αime

Viµm∑
j αjme

Vjµm
(7)

3.2 Data specification

The properties of the neighborhoods used were the number of charging stations, the total number of inhabitants,
the percentages of inhabitants aged between 0 and 14, between 15 and 24, between 25 and 44, between 45
and 64, and 65 and older, the average income per inhabitant, the number of cars (electric or otherwise) per
inhabitant, the percentage of homes built after the year 2000, and the number of homes per inhabitant. The
charging sessions used were those between 2014 and 2015, properties of neighborhoods differed by year and
were lagged variables (i.e. we used properties from 2013 to predict demand for 2014), except for the number of
charging stations, which differed by month and were unlagged. In the nested logit, every district was a nest, in
the cross nested logit we took the districts as nests, but allowed neighborhoods at the borders between districts
to lie partially in the bordering district.

4 Results

The cross nested logit model proved superior to the multinomial and nest logit models. We obtained the following
goodness of fit (McFadden’s adjusted ρ2[8]) and the following estimates for our β parameters and nest coefficents:

Table 1. Adjusted ρ2 of the models for MNL, NL and CNL

Modeltype Regular Users Electric Carshare Taxi

MNL 0.058 0.061 0.269

NL 0.063 0.073 0.296

CNL 0.07 0.08 0.30



Table 2. Estimates β Parameters for the CNL models, t-tests in brackets

Parameters Regular Users Electric Carshare Taxi

Number of Charging Stations N/A 0.683 (86.88) 0.477 (18.04)
Total number of inhabitants 0.586 (162.95) 0.193 (33.83) 0.436 (12.93)
Aged 0-14 (in %) 0.587 (66.45) 0.386 (20.17) 0.681 (7.90)
Aged 15-24 (in %) 0.520 (68.66) 0.00898 (0.63) 0.481 (7.46)
Aged 25-44 (in %) 0.647 (40.98) 0.237 (6.20) 0.776 (6.50)
Aged 45-64 (in %) 0.332 (27.41) -0.312 (-12.95) -0.679 (-7.84)
Aged 65+ (in %) 0.145 (23.28) 0.0329 (2.99) 0.414 (9.82)
Average income 1.05 (152.30) -0.311 (-22.17) -0.776 (12.93)
Average number of cars per inhabitant 0.809 (141.24) 0.388 (46.62) -0.697 (-14.61)
Average number of homes per inhabitant 0.857 (67.10) 1.88 (56.68) -2.91 (-9.42)
Percentage of homes built after 2000 -0.0399 (-30.92) -0.0195 (-8.10) 0.145 (14.56)

Table 3. Estimates µ Nest Coefficients for the CNL models, t-tests in brackets

Nests Regular Users Electric Carshare Taxi

Amsterdam City Centre 1 (fixed) 1.05 (152.82) 3.73 (8.45)
Amsterdam North 1.79 (149.52) 2.09 (82.32) 1.78 (35.28)
Amsterdam West 1.33 (314.61) 1.14 (241.08) 2.11 (24.42)
Amsterdam New-West 1.67 (167.98) 3.18 (68.14) 1 (fixed)
Amsterdam Westpoort 1 (fixed) 1.43 (23.04) 1 (fixed)
Amsterdam East 1.39 (213.40) 1 (fixed) 2.94 (30.02)
Amsterdam SouthEast 3.44 (99.43) 11.4 (26.62) 11.6 (5.83)
Amsterdam South 1.16 (463.53) 1.25 (201.53) 3.06 (25.64)

Table 4. Estimates α Nest coefficents for neighborhoods in more than 1 nest for the CNL models (reg=Regular users)

Neighborhood (Nest 1/Nest 2) Reg 1 Reg 2 Carshare 1 Carshare 2 Taxi 1 Taxi 2

Haarlemmerbuurt (City Centre/West) 0.314 0.686 0 1 0.354 0.646

Jordaan (City Centre/West) 1 0 0.117 0.883 0 1

Weteringschans (City Centre/South) 0.868 0.132 0 1 0 1

Weesperbuurt en Plantage (City Centre/East) 0.9785 0.0215 1 0 0.272 0.728

Oostelijke Eilanden en Kadijken (City Centre/East) 0.582 0.418 0 1 0.130 0.870

Frederik Hendrikbuurt (West/City Centre) 1 0 0.970 0.03 1 0

Da Costabuurt (West/City Centre) 1 0 0.989 0.011 1 0

Overtoomse Sluis (West/South) 0.0117 0.9883 0.369 0.631 0 1

Vondelbuurt (West/South) 0.304 0.696 1 0 1 0

De Kolenkit (West/New-West) 0.978 0.022 0.911 0.089 0.174 0.826

Van Galenbuurt (West/New-West) 0.289 0.711 0.842 0.158 1 0

Hoofdweg en Omgeving (West/New-West) 0.313 0.687 1 0 1 0

Westindische buurt (West/New-West) 0.326 0.674 0.473 0.527 1 0

Slotermeer-Noordoost (New-West/West) 0.466 0.534 0.252 0.748 0.883 0.117

Overtoomse Veld (New-West/West) 0.723 0.277 0 1 0.804 0.196

Westlandgracht (New-West/South) 0.804 0.196 0 1 0 1

Oude Pijp (South/City Centre) 0.006 0.994 1 0 0.893 0.107

Diamantbuurt (South/East) 1 0 0 1 0.361 0.639

Hoofddorppleinbuurt (South/New-West) 1 0 0.019 0.981 1 0

Willemspark (South/West) 0 1 0.818 0.182 0.834 0.166

IJselbuurt (South/East) 0.253 0.747 0.649 0.351 0.366 0.634

Rijnbuurt (South/East) 0.361 0.639 1 0 0.388 0.612

Buitenveldert Oost (South/East) 1 0 0.997 0.003 1 0

Weesperzijde (East/South) 0.673 0.327 0.308 0.692 0.344 0.656

Oosterparkbuurt (East/City Centre) 0.631 0.369 0.829 0.171 0.697 0.303

Dapperbuurt (East/City Centre) 0.855 0.145 0 1 0.858 0.142

Oostelijk Havengebied (East/City Centre) 0.377 0.623 0 1 0.893 0.107

De Omval (East/South) 1 0 0.932 0.068 1 0



Table 5. Neighborhoods limited to being in a specific nest

Nests Neighborhoods

Amsterdam City Centre Burgwallen-Oude Zijde, Burgwallen-Nieuwe Zijde, Grachtengordel-West,
Grachtengordel-Zuid, Nieuwmarkt en Lastage

Amsterdam North Volewijck, IJplein en Vogelbuurt, Tuindorp Nieuwendam, Tuindorp Buiksloot,
Nieuwendammerdijk en Buiksloterdijk, Tuindorp Oostzaan, Oostzanerwerf, Ka-
doelen, Nieuwendam-Noord, Buikslotermeer, Banne Buiksloot, Buiksloterham,
Nieuwendammerham, Waterland

Amsterdam West Houthavens, Spaarndammer- en Zeeheldenbuurt, Staatsliedenbuurt, Centrale
Markt, Kinkerbuurt, Van Lennepbuurt, Helmersbuurt, Sloterdijk, Landlust,
Erasmuspark, De Krommert

Amsterdam New-West Slotermeer-Zuidwest, Geuzenveld, Eendracht, Lutkemeer en Ookmeer, Osdorp-
Oost, Osdorp-Midden, De Punt, Middelveldsche Akerpolder en Sloten, Sloter-
vaart, Sloten- en Riekerpolder

Amsterdam Westpoort Westelijk Havengebied, Bedrijventerrein Sloterdijk

Amsterdam East Indische Buurt West, Indische Buurt Oost, Zeeburgereiland en Nieuwe Diep,
IJburg West, IJburg Zuid, Transvaalbuurt, Frankendael, Middenmeer, Beton-
dorp,

Amsterdam SouthEast Amstel III en Bullewijk, Bijlmer-Centrum D, F en H, Bijlmer-Oost E,G en K,
Nellestein, Holendrecht en Reigersbos, Gein, Driemond

Amsterdam South Nieuwe Pijp, Schinkelbuurt, Museumkwartier, Stadionbuurt, Apollobuurt, Duiv-
elseiland, Scheldebuurt, Station-Zuid WTC en omgeving, Buitenveldert-West

5 Discussion of Results

From other similar discrete choice model estimations it has been observed that a McFadden’s ρ2 of around 0.1
indicates a good fit while a ρ2 of between 0.2 and 0.4 indicates an excellent fit[8]. This would indicate that our
models for Regular users and participants of an Electric Carshare scheme are reasonably good while our Taxi
model is excellent. Indeed when we compared the probabilities given by our models to the actual frequencies
of our data we observed a very good match. Our results also showed that some neighborhoods were far more
correlated with other districts than the one they were located in and that this vastly differed for the different
kinds of usertype (the Diamantbuurt being in the South nest entirely when considering Regular users but in the
East district entirely when considering Carshare users for example). A possible explanation in the case of the
Diamantbuurt is that the South district is a more expensive district than the East district, so the regular users
(who tend to be more affluent) tend to be in the South district more than Electric Carshare participants (who
tend to be less affluent).

6 Conclusion

We have generated models to estimate the distribution of charging demand for three different usertypes for
a given year by using data of the previous year. Using these models we should be able to make reasonable
predictions of the distribution of charging demand in the coming year, even in the case that the makeup of a
neighborhood changes significantly (for example when the Jordaan went from a low/average income neighborhood
to a high income one in a reasonably short time period) or in the case that new neighborhoods arise (for example
through development projects). This way the city will be able to place charging infastructure to accomodate this
demand.
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Electric Vehicle Routing with Uncertain Charging Station

Availability & Dynamic Decision Making

Nicholas D. Kullman Justin C. Goodson Jorge E. Mendoza

1 Introduction

Motivated by environmental concerns and regulations, electric vehicles (EVs) are becoming more
popular in supply chain distribution functions (e.g., La Poste [1]). However, EVs pose operational
challenges to which their conventional petroleum-based counterparts are immune. For instance,
EVs’ driving ranges are often only 25 percent that of conventional petroleum-based vehicles’ (CVs),
charging infrastructure is still relatively sparse compared to the network of refueling stations for
CVs, and the time required to charge an EV can range from 30 minutes to 12 hours depending on
charging technology - orders of magnitude longer than the time needed to refuel a CV [3].

There are two general approaches to overcoming these operational challenges. The first is a
simple approach in which routes are restricted to the vehicle’s autonomy. That is, the EV is routed
back to the depot when its battery nears depletion so it may charge overnight in preparation for
the subsequent day’s deliveries. In the second approach, the EV is allowed to perform mid-route
recharging by taking advantage of charging infrastructure in the field.

Montoya showed that the second approach offers cost savings, because mid-route recharging
allows for a decrease in the total distance traveled and an increase in the capacity of a single
EV, thereby reducing the number of vehicles and drivers needed [5]. However, this study, like
the others that consider mid-route recharging (e.g.,[8][2]), makes the assumption that the charging
stations (CSs) are always available to the EV when it arrives to charge. In reality, this is often
not the case. Because charging station infrastructure is limited and EVs require significant time to
charge, charging stations will often be unavailable when an EV arrives and the EV may be forced to
queue. This discrepancy between modeling assumptions and reality has thus far prohibited logistics
companies from implementing mid-route recharging, despite the suggested cost savings [5].

Our research reduces this discrepancy by more realistically modeling both the uncertainty in
availability and the queuing process at public charging infrastructure. We model the EV Rout-
ing Problem with Mid-route Recharging and Uncertain Availability (EVRP-MRUA) as a Markov
decision process, and we provide a stochastic dynamic programming solution with three different
policies. This work aims to enable logistics companies to take advantage of the increases in capacity
offered by mid-route recharging, thus extending the utility of EVs as delivery vehicles.

1.1 Related Literature

The literature reports on only two attempts to address charging station availability in EV routing
problems. In a recent study, Sassi et al. address an EV routing problem in a semi-public infras-
tructure context [7]. In their application the infrastructure is owned by several companies. Each
company is assigned time slots during which it is allowed to use a given station. The decision
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maker must then take into account these time windows when designing the routes. Sweda et al.
study a shortest path problem in which a vehicle must travel from an origin to a destination on a
network with charging stations positioned at every node [9]. Each station has a probability of being
available and expected waiting time until becoming available (known a priori to the planner). In
this context, the decision maker must not only select which path to take to arrive at the destination
as quickly as possible, but also decide where to recharge and what to do in case a desired charging
station is unavailable (i.e., wait or seek an alternative station). The authors propose an approach
to determine an adaptive routing and recharging policy that minimizes the sum of all traveling,
waiting, and recharging costs. Our work builds on these studies by dynamically routing an EV
over a network of customers and charging stations, assuming public infrastructure with unknown
availability.

2 Problem Statement

The EVRP-MRUA consists of a set of known customers N and charging stations C and a single
electric vehicle. At time 0, the EV begins at the depot, which we refer to as node 0 ∈ C. It then
traverses the complete graph on N ∪ C.

We assume there exists a Hamiltonian path among the set of CSs such that the edge connecting
two charging stations can be traversed with a fully charged vehicle. Further, we assume that the
edge from each customer node i ∈ N to the nearest CS can be traversed by a half-charged vehicle.
These two assumptions guarantee each customer in N can be serviced by the vehicle. Without loss
of generality, we assume travel times are whole numbers and time periods can be indexed via the
nonnegative integers.

If the EV elects to visit a CS c ∈ C, the vehicle may charge if there are available charging
terminals (“chargers”), or it may elect to join the queue if all chargers are in use. Let the number
of chargers at a CS c be ψc. We assume that the ψc chargers at the CS are identical, although
the charging technology may differ between charging stations. We further assume that the depot
is always available for charging and that other charging station queue lengths are unknown prior
to arrival.

We model waiting line dynamics at a CS c as a pooled first-come-first-served queue with a
system capacity of `c ≥ ψc, where `c is chosen such that the system capacity is practically infinite.
We consider a discrete-time Markov model on the state-space {0, 1, . . . , `c} and assume that the the
random inter-arrival time of vehicles to the station and the random service time of a single charger
are geometric random variables with known parameters px and py, respectively. After the vehicle
joins the queue, it may continue to wait, or it may leave. When a station is available, the vehicle
may restore its charge to full capacity Q or to an intermediate capacity.

The problem terminates when the EV has visited all customers and returns to the depot. The
goal of the EVRP-MRUA is to find a routing policy that minimizes the total expected time of the
EV to visit each customer in N , including travel time, charging time, and queuing time.

3 Problem Formulation

We model the EVRP-MRUA as a Markov decision process and solve it using an approximate
stochastic dynamic program (SDP).
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State We denote the state of the system at decision epoch k by sk. sk is the vector containing all
information necessary to make a routing decision at epoch k and consists of the EV’s current charge
level in kWh qk ∈ [0, Q], the time tk ∈ N, the EV’s current location ik ∈ N ∪C, the set of customers
that the EV has not yet visited N̄k ⊆ N , and the vehicle’s position at the current node zk. We
assume that at customer nodes and at the depot, the EV is always in the first position zk = 1,
while at public charging stations, the position depends on demand at the CS, so zk ∈ {0, . . . , `ik}.
Thus, sk =

(
qk, tk, ik, N̄k, zk

)
. The initial state is s0 = (Q, 0, 0,N , 1), and the problem terminates

at some decision epoch K with sK ∈ { (qK , tK , 0, ∅, 1) | qK ∈ [0, Q], tK ∈ N }.

Action space At each decision epoch k ∈ {0, 1, . . . ,K}, we begin in a pre-decision state sk and
select an action x from the action space X (sk). Actions are location-charge pairs, x = (i′, q′). The
action space consists generally of queuing, moving, and charging decisions. We impose the following
restrictions on the action space: the vehicle may only queue if it resides at a CS with no available
chargers; the vehicle may only make moves to nodes i′ ∈ N̄k ∪ C that are energy-feasible, with the
additional requirement that if i′ ∈ N̄k it must have sufficient charge to subsequently reach a CS
from i′; finally, the vehicle may only charge if it resides at a CS with available chargers, it may not
charge in two consecutive epochs, and it must at least charge to an energy level sufficient to reach
the nearest CS.

Transition to post-decision state Following the selection of an action x = (i′, q′), we transition
to the post-decision state sxk. In this transition, we update the location ixk = i′ and charge qxk = q′.
We also update the set of unvisited customers: N̄ x

k = N̄k \ {i′} if i′ ∈ N̄k, and N̄ x
k = N̄k otherwise.

Transition to pre-decision state From the post-decision state sxk, we transition to the subse-
quent pre-decision state sk+1. This transition involves updating the remaining components of sk:
the EV’s position at the current location zk+1 and the time at which the next epoch occurs tk+1.

Position: If the EV now resides at the depot or a customer, then zk+1 = 1; however, if the
EV resides at a CS c 6= 0, then zk+1 is probabilistic. Let Gc,k+1 be a random variable that rep-
resents the queue length of CS c at time k + 1, and let gc,k+1 be a realization of Gc,k+1. Then
zk+1 = gc,k+1 + 1.

Time: If the action x selected in decision epoch k was a charging or moving action, then the
time of decision epoch k + 1 is deterministic. Specifically, tk+1 = tk + τii′ for moving actions and
tk+1 = tk + ū(q, q′) for charging actions, where τii′ is the time required to travel between locations
i and i′, and ū(q, q′) is the time required to charge from charge level q to q′. For queuing actions,
the time of the next epoch is probabilistic and equal to either the time of the next departure from
the queue or after a predetermined amount of time δ has elapsed, whichever comes first.

Costs When we are in state sk and choose action x = (i′, q′) we incur a cost of C(sk, x), measured
in time. The cost for moving and charging actions is τii′ and ū(q, q′), respectively, the time required
to perform these actions. If the vehicle elects to queue at a charging station, the cost is the expected
waiting time until the next decision epoch. Let ψc be the number of chargers at the CS c, κ be a
realization of the waiting time until a departure, and γ be a realization of the number of departures
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that occur at time tk+1 = tk + κ. Then the expected waiting time is

C(sk, x) = δPr(no departures) +

δ∑
κ=1

ψc∑
γ=1

κPr(γ departures at time κ). (1)

Objective A decision rule at epoch k is the function Xπ
k that selects an action x from the action

space X (sk). A policy π is a sequence of decision rules. Letting Π denote the set of Markovian
deterministic policies, we seek to find an optimal policy π∗ ∈ Π that minimizes the expected total
cost (duration) of the tour, conditional on our initial state. The value of this policy is measured
by the expected duration of the resulting tour T ∗

T ∗ = min
π∈Π

E

[
K∑
k=0

C(sk, X
π
k (sk))

∣∣∣∣∣s0

]
= E

[
K∑
k=0

C(sk, X
π∗
k (sk))

∣∣∣∣∣s0

]
. (2)

4 Solution Methods and Preliminary Results

To date, we have implemented three policies for the SDP: a simple myopic policy, a one-step rollout
of the myopic policy, and a fixed-route policy. We ran each policy on a set of 22 instances that
were generated by Montoya et al. [6] to emulate three different types of customer distributions
in urban environments: customers randomly scattered throughout the service area (“Random”);
customers that form clusters throughout the service area (“Cluster”); and a combination of these
two in which most customers are in clusters, but some have been randomly scattered throughout
(“Random+Cluster”). For each instance, we ran each policy under nine different assumptions
of the average utilization of the charging stations (5% average utilization, 15%, 25%, . . ., 85%).
We performed 200 simulations for each policy-instance-utilization combination. For the one-step
myopic rollout, we simulated the myopic base policy 25 times for each reachable state sk+1 from
sk (see Goodson for more on rollout policies [4]). Our results are summarized in Figure 1.

Figure 1: Expected total tour duration across policies, customer distributions, and CS utilizations.
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We find that the rollout of the myopic policy performs better than the myopic policy alone, and
the fixed-route policy performs better still than both of these, although the extent by which varies by
customer distribution and CS utilization. The biggest differences in policy performance are for the
Random+Cluster customer distribution at high CS utilizations where the policies differ by more than
75%, while the smallest differences are for the Cluster customer distributions at low CS utilizations
where all policies perform within 9% of one another on average. The Cluster customer distribution
lends itself to the myopic approach where the EV simply performs the cheapest immediate action,
thus resulting in the similarity in performance across policies that we observe. For the other
customer distributions, the myopic policy has greater potential to make costly decisions, but these
are largely avoided by rolling out the myopic policy.

The improvement in performance that the rollout of the myopic policy offers over the myopic
policy alone is encouraging. We are currently in the process of implementing a rollout for the
fixed-route policy as well and hope to be able to report on similar improvements.
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1 Introduction

Electric Vehicle (EV) adoption has been dramatically lagging behind anticipation. While the

U.S. goal was to have 1 million EVs on the road by the end of 2015, it was not until September

2016 that the size of the EV fleet has reached half a million units [5, 14]. The hesitation of many

drivers to switch to EV is based on two key reasons: The limited driving range of EVs and the long

charging times of the batteries. To overcome these drawbacks, dynamic charging was proposed

and tested Onar et al. [11], Jang et al. [8] as a promising solution. This pioneering technology

allows EVs to charge wirelessly from roadbed transmitters while the vehicle is moving. However,

the shortage of charging facilities in the urban traffic network continues to hamper the growth of

the EV market [7]. While many potential consumers are shying away from buying into the EV

technology due to this particular limitation, both public and private sectors seem reluctant to invest

in charging infrastructure. The reason behind this hesitation is the insufficient number of EVs on

the road. Solving this (chicken-and-egg) dilemma depends strongly on a strategic deployment of

wireless charging stations (WCS) that optimizes both locations and capacities of these stations in

urban areas [13]. In this paper, we address this problem via an analytical approach in which the

new wireless charging technology is optimally deployed to minimize the investment cost. In doing

so, to facilitate EV adoption, we capture the existing traffic pattern on the road network via prior
∗This research was supported by the National Science Foundation under grant CMMI-1550448.
†Corresponding Author, E-mail: uster@smu.edu, Phone: (214) 768 3575.
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user equilibrium (UE) traffic assignment solution and devise a solution so that the drivers do not

need to deviate from their usual routes.

2 Related Literature and Contribution

Studies on wireless EV charging networks only recently started to appear in the literature. Ko

and Jang [9] present a mathematical formulation to optimize the design of the dynamic-charging-

based mass transportation system, addressing the trade-off between the number of deployed power

transmitters and the size of EV battery. Riemann et al. [12] propose a flow-capturing location

model to maximize the captured EV flow by locating a fixed number of WCSs without cost and

capacity considerations. They also assumed that an EV is always fully charged when traveling

over a charging lane. Fuller [6] considers investment cost minimization for a WCS infrastructure

that allows EV travel between 39 key origin-destination pairs in California. Chen et al. [3] study

the optimal deployment of charging lanes under a limited budget and a fixed charging rate of the

charging lanes.

Our study contributes to the emerging literature of EV dynamic charging with a new

mathematical formulation that optimally locate WCSs and decide on the optimal power allocation

for each WCS. The model embraces the user equilibrium traffic pattern and imposes in-motion

charging requirements so that traveling EVs are ensured to reach their destinations without being

stranded on their routes. This study also offers a Benders Decomposition based algorithm to solve

the large instances of the formulated problem. Both combinatorial and classical Benders cuts are

utilized in the proposed approach.

3 Problem Definition

We approach the problem from the perspective of a city as the decision maker whose aim, for

societal benefits, is to satisfy the charging demands of all EVs in its urban network at the minimum

investment cost. We represent the underlying road network as a directed graph with nodes and

arcs representing specific locations including intersections and road segments, respectively. Given

a set of origin-destination (OD) node pairs with a certain traffic flow demand, as an input to our

model, we first calculate a user equilibrium (UE) traffic assignment which provide travel volumes

and travel times on links. As noted by Mahmassani [10], UE offers a suitable system representation

for long term planning purposes as in our case.

Letting road segments (links) represent potential locations for WCS, our problem is formulated

as a mixed integer program where the decision variables include locations and power capacities
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of the WCSs as well as the wireless charging amounts on links. Inputs to the model, other than

UE results, include electric parameters such as the charging power of the system, the charging

efficiency, and the battery size of EVs. The objective of our model is to minimize the installation

(investment) cost which is composed of a fixed cost for base power capacity and a stepwise capacity

expansion cost, as well as the total charging cost subject to the main constraints representing

1. energy conservation (balance) constraints on links,
2. relationship between the amount of energy that EVs receive on links and the power capacities

of WCSs and travel time on these links,
3. relationship between the required power capacities of WCSs and the travel demands their

links,
4. limitations on the maximum power capacity that can be installed at WCSs,
5. limitations on the amount of charge an EV can receive based on its battery size, and
6. initial and ending states of charge of EVs in the network.

4 Solution Methodology

Based on our initial computational experiments we observed that the Branch & Cut algorithm as

implemented in CPLEX was not efficient, especially due to excessive run times needed to generate

good bounds. Therefore, in this study, we combine features from classical Benders decomposition

(BD) [2] and combinatorial BD [4] to devise an efficient exact algorithm as a solution methodology

for the problem in hand. Specifically, we decompose the formulated MIP into two problems:

A master problem (MP) that includes the location decisions, and a subproblem (SP) including

the capacity decisions and the charging amounts decisions. In an iterative fashion, the locations

obtained by solving MP are passed to SP which is solved for the capacities of WCSs and the

amounts of charge on links. At each iteration, the MP solution provides a lower bound on the

overall problem. If a set of locations generated by MP is found infeasible when solving SP, then

a Benders combinatorial cut is generated and augmented to MP in the next iteration to force

MP to change its solution. This framework is strengthened by considering, in addition to the

combinatorial cuts, Benders classical cuts obtained by solving the dual of the linear relaxation of

SP. Our approach also employs three sets of surrogate constraints to further improve the solution

quality of the Benders master problem. In addition, by exploring the inherent trade-off specific

to our problem, we devise an effective heuristic algorithm to obtain good upper bounds for the

WCS network design problem. This heuristic algorithm also guarantee the feasibility of Benders

subproblems, and thus, to generate good Benders cuts.
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5 Computational Study on Algorithmic Performance

The effectiveness of the proposed solution methodology is assessed based on comparisons to

Branch & Cut (B&C) approach implemented by CPLEX. Random data sets are generated to

represent different transportation networks in the state of traffic UE. Due to excessive solution

times with the B&C method, for a fair comparison, we solve each instance first by using the

proposed BD approach with an optimality gap of 2.0% and record the runtime. The BD runtime

employed as a stopping criterion when solving the same instance using the B&C approach and the

optimality gap upon termination is recorded.

The results show superior performance for the proposed methodology in comparison to the B&C

approach. For all tested data classes, under the same runtime, our suggested BD approach was

able to solve our model to optimality gaps significantly less than 2%. On the other hand, B&C

produced low-quality solutions, specifically with poor upper bound values and, most of the time,

without lower bound values.

6 A Case Study: Chicago Sketch Network

We present a case study on Chicago Sketch Network [1] (with 933 nodes, 2,950 links, and 378

zones) to demonstrate the applicability of our model and the proposed algorithm on real traffic

network. We also provide a sensitivity analyses on some of the system parameters that affect the

system cost. The results indicate that the model captures key dynamics among input parameters

including battery capacity, charging power, and system efficiency and thus provide the means of

analyzing trade-offs involved in different real networks.
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1 Introduction and literature review

The efficient use of the transportation infrastructure and the impact of congestion have become
one of the major issues in city planning and urban logistics due to an increase of the complexity
of operations, specially in highly populated areas (see, e.g., Savelsbergh and Van Woensel [8]).
Therefore, the current traffic situation as well as the projected traffic scenarios are likely to
have, if not addressed correctly, a negative impact from a social, economic and a environmental
standpoint.

Most of the research related to the Vehicle Routing Problem (VRP) considers that the travel
time between two locations are fixed along the time horizon. An updated description of variants
and methods can be found in Toth and Vigo [10]. In the last few years, there has been a
trend to enrich these models by incorporating more complex travel time functions, aiming to
obtain solutions that are closer to real-world operations. These models are particularly useful
for urban logistics, where congestion may produce significant variations in travel times during
different moments of the day. For instance, last mile deliveries, which are estimated to account
of an important percentage of the total delivery costs, could be significantly improved by more
realistic approaches, translating into a better service and a more efficient use of the resources.

Time-Dependent Vehicle Routing Problems (TDVRPs) is the name given to a family of
problems that generalize the classical VRPs by considering more complex travel time and cost
functions, generally by incorporating some variability depending on the moment of the day an
arc is traversed. A recent survey on TDVRP variants is available in Gendreau et al. [5], covering
exact and heuristic algorithms.

The approach suggested by Ichoua et al. [7] to model congestion has recently caught the
attention of many researchers. Cordeau et al. [3] tackle the TDTSP with the objective to
minimize the makespan. They study some of the properties of the travel time function, including
the computation of a lower bound obtained by solving an auxiliary TSP with constant travel

∗aimontero@dc.uba.ar
†imendez@dc.uba.ar
‡jmiranda@utdt.edu

1



times. They show that the bound is tight depending on some parameters related to the travel
speed definitions and that, under some particular settings, the solution of the auxiliary TSP
is indeed optimal. They also propose a Branch and Cut (BC) algorithm and are able to solve
instances with up to 40 vertices. Ghiani and Guerriero [6] further exploit some of the properties
of the travel time function, and study its generality. In a follow up paper, Arigliano et al. [1]
extend the ideas proposed in Cordeau et al. [3] to the TDTSP with Time Windows (TDTSP-
TW). However, the results obtained are not as good as for the TDTSP. A BC algorithm is
evaluated on instances with up to 40 clients, obtaining mixed results.

Multi-vehicle versions of the TDVRP have also been tackled by exact algorithms that con-
sider the model proposed in Ichoua et al. [7]. Dabia et al. [4] consider the TDVRP with time
windows with the objective of minimizing the overall duration instead of the makespan. They
propose a set partitioning model and develop a Branch and Price (BP) algorithm, where the
column generation subproblem is solved by means of a tailored labeling algorithm. Related to
this research is the work by Sun et al. [9], where a profitable TDTSP with time windows and
precedence constraints are considered. Indeed, this particular variant arises as the column gen-
eration subproblem of a TDVRP with time-windows and precedence constraints. They propose
an Integer Linear Programming (ILP) model for the problem, which is not studied in detail due
to its poor performance when tackled with standard commercial solvers, and resort to dynamic
programming techniques.

In this research we tackle the version TDTSP-TW considered also in Arigliano et al. [1].
The contributions of this paper are the following: 1) we propose an alternative approach for the
TDTSP-TW that builds on the ILP formulation proposed by Sun et al. [9]; 2) we develop a BC
algorithm, including several initial heuristics, preprocessing rules and a cutting plane algorithm
that incorporates several families of valid inequalities; 3) we evaluate our approach and compare
the results with the ones reported in by Arigliano et al. [1]. To the best of our knowledge, this
is the first comparison of two exact approaches for the TDTSP-TW, establishing a baseline for
future approaches for the TDTSP-TW and other related problems.

2 Problem definition

The network is defined over a digraph D = (V,A), with V = {0, 1, . . . , n, n+1} the set of vertices
and A the set of arcs. Vertices 0 and n + 1 represent the depot, for which we do not consider
the incoming and outgoing arcs, respectively. There is a time horizon [0, T ] in which vehicles
move along the network. For each vertex i ∈ V , we denote by pi to its processing time and
Wi = [ri, di] the corresponding (hard) time window, where ri and di are the release and deadline
times, respectively. In particular, we set W0 = Wn+1 = [0, T ]. We allow waiting times when
arriving at a vertex before its release time ri, but the vehicle must wait until ri before starting to
process it. In addition, each arc (i, j) ∈ A has an associated travel distance Lij . Without loss of
generality, di + pi ≤ T for all i ∈ V . In addition, to simplify the notation in the manuscript, we
slightly modify the standard definition and assume that pi = 0 for i ∈ V . However, the models
and formulae present in this paper can be easily adapted to consider processing times.

Ichoua et al. [7] propose to partition the planning horizon into M intervals [Th, Th+1], h =
0, . . . ,M − 1. For each arc (i, j) ∈ A, the average value of the travel speed during the time
interval [Th, Th+1], denoted by vijh, for h = 0, . . . ,M − 1, is known. We refer to this partition as
speed profiles. It is important to remark that the speed profiles may differ among arcs. Based
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on this definition, the travel times are computed using the information of the distance to be
traveled, i.e. Lij , combined with the travel speeds vijh defined for the arc. However, it is not
assumed that the travel speed remains fixed during the trip and it may change whenever the
boundaries of a time interval are crossed. We denote by τij(t) to the time-dependent travel time
value on arc (i, j) ∈ A if departing from i at time t ∈ [0, T ], and it can be computed following
Algorithm 1 from Ichoua et al. [7]. This model is able to capture the time dependency while
satisfying the FIFO condition on the travel times.

The TDTSP-TW involves finding a tour that visits each vertex exactly once with the objec-
tive of minimizing the makespan of the route. The route starts at vertex 0 and ends at vertex
n + 1, while processing each vertex within its defined time window and computing the travel
times following the speed model proposed in Ichoua et al. [7].

Cordeau et al. [3] propose expressing the travel speeds vijh = δijhbhuij , where uij represents
the maximum speed for arc (i, j) ∈ A during the planning horizon, bh ∈ [0, 1] is the best
congestion factor during interval [Th, Th+1] and δijh ∈ [0, 1] represents the heaviest degradation
of the congestion factor of (i, j) ∈ A in interval [Th, Th+1] with respect to the less congested arc
in [Th, Th+1]. From a practical standpoint, this decomposition allows the authors to formulate
alternative scenarios that can be used to compute lower bounds for the problem by solving an
auxiliary problem as mentioned in the introduction. Our approach, however, does not rely on
exploiting this decomposition and builds directly upon the average travel speeds vijh.

3 ILP formulation and Branch and Cut algorithm

An alternative formulation for the TDTSP-TW can be obtained from the model proposed by
Sun et al. [9] for the Profitable TDTSP with Time Windows and Pickup and Delivery. Sun et
al. [9] report that for this particular problem the model does not produce good results when
solved by a commercial solver.

One of the interesting features of this ILP formulation is that, for each edge, it redefines
the partitions of the time horizon in order to obtain a linear travel time function within each
of them. The limits defining this new partition are referred as time breakpoints and allow
to easily embed the piece-wise linear time function within an ILP formulation. Formally, let
T ij = {T ij1 , . . . , T

ij
M} be the new partition of the time horizon into time intervals (also called

time zones) for arc (i, j) ∈ A. We denote the consecutive time breakpoints defining T ijm ∈ T ij as
T ijm = [wm, wm+1]. At this point, we abuse notation and refer to each time zone T ijm as m ∈ T ij ,
with m = 1, . . . , |T ij |. By definition, τij(t) becomes a linear function within each time zone.
Therefore, in order to obtain the linear function describing the travel time when traversing the
arc starting within the time zone can be calculated using wm, wm+1 and the proper evaluations
of τij(t). We denote by θmij and ηmij to the coefficients of the linear function, such that

τij(ti) = θmij ti + ηmij , ∀ ti ∈ T ijm . (1)

Let binary variables xmij take value 1 iff the vehicle traverses arc (i, j) ∈ A starting from i

within time zone T ijm ∈ T ij . For each vertex i ∈ V , a continuous nonnegative variable ti accounts
for the time that i is visited in the tour. The value of ti is decomposed to indicate time for a
given arc in a given zone. This is achieved by introducing continuous variables tmij defined in the
following fashion such that tmij = ti if xmij = 1, and 0 otherwise. The travel time function for arc
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(i, j), τij(ti), can be defined in an aggregated as

τij(ti) =
∑

T ij
m∈ T ij

θmij t
m
ij + ηmij x

m
ij . (2)

Due to space limitations, we do not include the ILP formulation explicitly. We remark that
it can be obtained by adapting the one presented in Sun et al. [9] to the TDTSP-TW. We
name the resulting ILP formulation as TTBF. A BC algorithm based on the TTBF with the
characteristics described below has been developed.

• Preprocessing rules: we extended and adapted to the time-dependent case some of the
rules proposed in Ascheuer et al. [2], including arc removal, tightening of time windows
and precedence inference between vertices based on the information provided by their time
windows.

• Initial heuristic: A sorting heuristic, a nearest neighbor and an insertion heuristic com-
bined with a local search procedure are considered to construct an initial feasible solution,
which is then transferred to the BC algorithm as an initial incumbent solution.

• Cutting planes: we included the classical Subtour Elimination Constraints (SEC) and the
π−, σ− and (π, σ)−inequalities from the Precedence Constrained TSP which exploit the
precedences identified in the preprocessing step.

4 Summary of computational results

We conducted computational experiments in order to evaluate the performance of the BC algo-
rithm described in the previous section, named TTBF-BC. We compare our results to the other
exact approach for the TDTSP-TW, proposed by Arigliano et al. [1] and referred as LBF-BC.
The algorithms are coded in C++, using CPLEX 12.5 Callable Library as LP and MILP solver.
The experiments are run on a Workstation with an Intel Core i7-2600 3.4GHz CPU and 16GB
of RAM. The algorithms are evaluated on the instances considered in Arigliano et al. [1], which
are constructed by extending the instances generated in Cordeau et al. [3] to the case with time
windows. The congestion is partially captured by the values δijh and ∆ = mini,j,h δijh. They
consider values of n = 15, 20, 30, 40, ∆ = 0.7, 0.8, 0.9, 0.98 and two different traffic patterns, with
30 instances for each combination of these parameters.

We report the number of instances solved to optimality over 30 instances (OPT), computa-
tional times in seconds (Time), number of nodes explored in the BB tree (Nodes), the % gap
at the root node (%rG) and at the end of the execution (%fG). We impose a limit of 3600
seconds for the execution time, the results are disaggregated between solved and unsolved in-
stances. Each metric is averaged over the corresponding subset of instances, depending on the
case. Gaps %rG and %fG are computed as (zbest − z)/z, where zbest represents the objective
function of the best feasible solution for the instance and z the value being considered.

The results obtained suggest that TTBF-BC outperforms LBF-BC, produces better results in
terms of number of instances solved, the average computing time and number of nodes explored
during the enumeration. Due to space limitations, only the results for n = 40 are presented in
Table 11 The behavior exhibited regarding the relation between %rG and %fG indicates that

1We believe the %rG of LBF-BC for ∆ = 0.7, Traffic Pattern B is indeed a typo and should be multiplied by
100. There are two missing files in the set of instances, which we consider as unsolved for our algorithm.
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Pattern ∆
LBF-BC TTBF-BC

OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time

A

0.98 18
0.06 0.00 3 1.76 26 46.22 0.00 1918 471.36
2.51 2.35 - - 4 67.38 3.39 5749 -

0.90 10
0.22 0.00 300 40.73 25 42.58 0.00 1759 389.56
2.14 1.88 - - 5 65.48 2.81 19161 -

0.80 11
0.53 0.00 615 47.66

30 41.66 0.00 1891 382.74
2.10 1.25 - - -

0.70 12
1.00 0.00 6 2.40 22 33.44 0.00 535 385.11
3.11 1.73 - - 6 32.15 0.56 34645 -

B

0.98 9
0.13 0.00 0 0.78 27 121.38 0.00 1536 426.12
1.00 0.73 - - 3 204.63 3.22 17890 -

0.90 10
0.70 0.00 205 25.21 25 78.91 0.00 2576 480.51
1.93 0.70 - - 5 135.28 2.73 18.833 -

0.80 11
1.48 0.00 26 8.03 29 86.25 0.00 1090 293.45
3.40 1.72 - - 1 187.90 1.73 3331 -

0.70 3
0.99 0.00 0 1.08 28 70.48 0.00 1022 381.54
0.03 2.80 - - 2 179.30 0.98 4094 -

Table 1: Results for traffic pattern A and B, n = 40.

the lower bound considered in LBF-BC is very tight in general, but in terms of a BC algorithm
the formulation finds difficulties to improve this bound and close the gap to prove optimality.
Indeed, the authors report that the cutting plane algorithm is not able to improve this bound
at the root node, and we observed that in many of the instances solved, the optimality is proved
before starting the enumeration.

References

[1] A. Arigliano, G. Ghiani, A. Grieco, and E. Guerriero. Time dependent traveling salesman problem with time
windows: Properties and an exact algorithm. Technical report.

[2] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the asymmetric travelling salesman problem with time
windows by branch-and-cut. Mathematical Programming, 90(3):475–506, 2001.

[3] J.-F. Cordeau, G. Ghiani, and E. Guerriero. Analysis and branch-and-cut algorithm for the time-dependent
travelling salesman problem. Transportation Science, 48(1):46–58, 2012.

[4] S. Dabia, S. Ropke, T. van Woensel, and T. D. Kok. Branch and price for the time-dependent vehicle routing
problem with time windows. Transportation Science, 47(3):380–396, 2013.

[5] M. Gendreau, G. Ghiani, and E. Guerriero. Time-dependent routing problems: A review. Computers &
Operations Research, 64:189–197, 2015.

[6] G. Ghiani and E. Guerriero. A note on the ichoua, gendreau, and potvin (2003) travel time model. Trans-
portation Science, 48(3):458–462, 2014.

[7] S. Ichoua, M. Gendreau, and J.-Y. Potvin. Vehicle dispatching with time-dependent travel times. European
journal of operational research, 144(2):379–396, 2003.

[8] M. Savelsbergh and T. Van Woensel. 50th Anniversary Invited Article City Logistics : Challenges and
Opportunities. Transportation Science, (March), 2016.

[9] P. Sun, S. Dabia, L. P. Veelenturf, and T. Van Woensel. The time-dependent profitable pickup and delivery
traveling salesman problem with time windows. Technical report, Eindhoven University of Technology, 2015.

[10] P. Toth and D. Vigo, editors. Vehicle Routing: Problem, Methods and Applications. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2014.

5



A Mixed-Integer Linear Program for the Traveling
Salesman Problem with Structured Time Windows

Philipp Hungerländer∗ Christian Truden †

5th January 2017

Abstract
In this extended abstract we introduce the Traveling Salesman Problem with structured Time Windows (TSPsTW)

that is motivated by an online shopping application of an international supermarket chain. We suggest an efficient
and easy to implement mixed-integer linear programm (MILP) of the TSPsTW and in a computational study com-
pare it to related MILPs from the literature. Finally we analyze the relation of TSPsTW, TSPTW and TSP with the
help of dependency graphs and give an outlook on further planned extensions of the applicability of our MILP.

Key words. Traveling salesman problem, time windows, exploiting structure, mixed-integer linear programming.

1 Introduction
The NP-hard [12] Traveling Salesman Problem with Time Windows (TSPTW) is concerned with visiting a set of n
customers within their assigned time windows such that a given objective function is minimized. For the TSPTW
there are two main objective functions considered in literature:

• Makespan: Minimize the total tour duration, i.e. the completion time of the tour,

• Travel time: Minimize the sum of travel times between all pairs of subsequent customers in the tour.

The TSPTW has several applications in its own right [4] and additionally also appears as subproblem within
the more general capacitated Vehicle Routing Problem with Time Windows (cVRPTW), see e.g. [2, 5] for excellent
survey articles. In their recent paper Kara and Derya [11] give a comprehensive review of exact approaches to both
the symmetric and the asymmetric TSPTW and survey available benchmark instances for both problem variants.

In our forthcoming conference paper [9] (see also the technical report [10] for an extended version) we have
already defined the Traveling Salesman Problem with structured Time Windows (TSPsTW) as a subproblem of
a capacitated Vehicle Routing Problem with structured Time Windows (cVRPsTW). The difference between the
TSPsTW and the standard TSPTW is the special structure of the time windows: structured time windows can hold
several customers and are non-overlapping. Note that similarly the TSPTW was introduced as a subproblem of the
VRPTW by Savelsbergh [15] in 1992.

This special structure of the time windows is motivated by an application in the context of a large international
supermarket chain that builds their vans’ tours as new customer orders come in. Nowadays, all main supermarket
chains provide online shopping services, where customers select groceries on the supermarket’s website, as well as
a delivery time window. Then the supermarket distributes the groceries to the customers within the time window
that the customer selected.

For this online shopping application the structure of the time windows is set by the supplier who provides
the customer with a selection of time windows to choose from. Hence in our application providing these special
structural features does neither impose substantial restrictions to the supplier nor to the customers. Due to the
strict time limits of our application we strive to develop fast methods that are able to computationally exploit this
additional structure of the time windows efficiently. The main contributions of this extended abstract are:
∗Laboratory for Information & Decision Systems, MIT, USA, philipp.hungerlaender@aau.at
†Department of Mathematics, Alpen-Adria Universität Klagenfurt, Austria, christian.truden@aau.at
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1. Defining the TSPsTW that is motivated by an online shopping application.

2. Suggesting a simple and nonetheless efficient mixed-integer linear program (MILP) for the TSPsTW that can
be easily and quickly implemented by practitioners and comparing it to related MILPs from the literature in a
computational study.

3. Analyzing the relation of TSPsTW, TSPTW and TSP with the help of dependency graphs.

The extended abstract is organized as follows. We give a formal problem description of the TSPsTW in Section 2
and state a corresponding MILP in Section 3. In Section 4 we demonstrate the efficiency of our MILP on benchmark
instances related to our online shopping application in a computational study. In Section 5 we motivate the concept
of dependency graphs and Section 6 concludes the paper and gives an outlook on planned future extensions.

2 Formal Definitions for the TSPsTW
A TSPsTW instance consists of the following input data:

• A set of customers C .

• A travel time function t : C ×C → R+.

• A set of time windows W =
{

w1, . . . ,wq
}

, where each time window w ∈W is defined through its start time
sw and its end time ew.

• A function w : C → W that assigns a time window to each customer during which the delivery van has to
arrive at the customer.

We speak of structured time windows, if the number of customers |C | = n is much larger than the number of
time windows |W |= q, i.e. n >> q, and therefore typically several customers are assigned to the same time window.
We further denote the set of customers assigned to time window w ∈W as [nw]. We assume that all time windows
are non-overlapping, i.e. ew ≤ sw+1, w ∈ [q− 1], holds, where the sets [u], u ∈ N, and [u0], u ∈ N, contain the
elements {1,2, . . . ,u−1,u} and {0,1,2, . . . ,u−1,u} respectively.

A tour A = {a0,a1,a2, . . . ,an,an+1} contains n customers, where the indices of the customers display the
sequence in which the customers are visited. A tour starts at the depot a0 and ends at the depot an+1. Typically
a0 = an+1 is assumed. Furthermore our start and end depot get assigned the time windows w0 and wq+1 with start
time 0 and the end time set to ∞.

Note that most TSPTW models from literature do not explicitly contain service times at the customers. If
a service time function s : C → R+ is given, then the service times are usually added to the travel times, i.e.
ti j = t(i, j)+ s(i), i, j ∈ C , resulting in an asymmetric travel time function. Hence a symmetric travel time function
is only possible if all service times are equal which makes the symmetric TSPTW not usable for many applications.

In our online shopping application, we typically deal with asymmetric travel time functions for which the tri-
angle inequalities t(u,v) ≤ t(u,w)+ t(w,v), u,v,w ∈ C , hold in theory. However in practice the travel times are
usually rounded to integers, which typically destroys the correctness of some triangle inequalities [7]. Thus it is
quite convenient that our MILP presented in the following section is applicable to arbitrary asymmetric travel time
functions.

3 A MILP for the TSPsTW
In order to formulate a MILP for the TSPsTW, let us introduce the following decision variables:

• The binary variables xi j ∈ {0,1}, i ∈ [nk], j ∈ [n`], k ∈ [q0], ` ∈ [q+ 1], k ≤ ` ≤ k + 1, i 6= j, with the
interpretation:

xi j =

{
1, if customer a j is visited directly after customer ai,

0, otherwise.
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• The non-negative variables wi, i ∈ [q0], giving the wait time during time window i.

Furthermore we use the non-negative parameters α1 and α2 with α1 +α2 = 1 that define a convex combination of
travel time and wait time in our objective function. If we set α1 = α2 = 0.5, then our MILP determines a tour with
minimal makespan.

Note that the ability to consider different objective functions is important in our online shopping application.
While new customer orders come in and are integrated into the delivery schedule, we minimize the sum of travel
time and then after closing the delivery schedule for new customer orders the goal is to determine tours with minimal
makespan.

Now we can formulate the TSPsTW as the following MILP:

min α1 ∑
i∈[nk], j∈[n`], k∈[q0]

`∈[q+1], k≤`≤k+1, i6= j

ti jxi j +α2 ∑
i∈[q0]

wi (1a)

s.t. ∑
i∈[nk], k∈[q0]

i6= j, k≤`≤k+1

xi j = 1, j ∈ [n`], ` ∈ [q+1], (1b)

∑
j∈[n`], `∈[q+1]
j 6=i, k≤`≤k+1

xi j = 1, i ∈ [nk], k ∈ [q0], (1c)

∑
i, j∈S,
i 6= j

xi j ≤ |S|−1, S⊂ [nk], k ∈ [q], |S| ≥ 2, (1d)

∑
i∈[nk], j∈[n`]

k≤`≤k+1, k<h, i6= j

ti jxi j + ∑
i∈[h−1]

wi ≥ sh, h ∈ [q], (1e)

∑
i∈[nk], j∈[n`]

k≤`≤k+1, k,`≤h, i6= j

ti jxi j + ∑
i∈[h]

wi ≤ eh, h ∈ [q0], (1f)

xi j ∈ {0,1}, i ∈ [nk], j ∈ [n`], k ∈ [q0], ` ∈ [q+1], k ≤ `≤ k+1, i 6= j, (1g)

wi ≥ 0, i ∈ [q0]. (1h)

The objective function (1a) ensures minimization of a weighted sum of travel and wait time. Equalities (1b) guar-
antee that we visit all customers and the end depot exactly once and equalities (1c) ensure that we leave the start
depot and all customers exactly once. Inequalities (1d) are the well-known subtour elimination constraints. Finally
inequalities (1e) and (1f) guarantee that the arrival times at all customers are neither before the start nor after the
end of their assigned time window.

4 Computational Experiments
All experiments were performed on a Ubuntu 14.04 machine equipped with an Intel Xeon E5-2630V3 @ 2.4 GHz
8 core processor and 132 GB RAM. We use Gurobi 6.5.1 as an IP-solver in single thread mode. We implemented
the two MILPs for the symmetric and the asymmetric TSPTW suggested by Kara and Derya [11], where we set
M = max

i∈[n]
ei +max

i∈[n]
ti0 in the symmetric TSPTW MILP as it was not specified in their paper.

We generated symmetric TSPsTW instances in order to compare all three MILPs. The coordinates of the cus-
tomers are sampled from a two-dimensional uniform distribution and the travel times are calculated as the Euclidean
distance between customers. The instances are generated by a simple heuristic that assigns customers to time win-
dows randomly and checks the feasibility of the assignment.

In Table 1 we compare the run times of our TSPsTW MILP with the symmetric and the asymmetric TSPTW
MILPs proposed by Kara and Derya [11]. We solve all models to optimality and set the time out TO to 20 minutes.
By n−q and n+q we denote the minimal and maximal number of customers assigned to one of time windows in the
respective benchmark instance. We use symmetric instances and the makespan objective function such that we are
able to apply all three models.

3



n q n−q n+q
Symmetric
TSPTW[11]

Asymmetric
TSPTW[11]

TSPsTW

12 5 1 4 9 ms 4 ms 1 ms
39 10 2 6 11 ms 4.57 sec 43 ms
35 15 1 4 12 ms 1.88 sec 17 ms
38 20 1 4 7 ms 38 ms 10 ms
83 30 1 6 55 ms 21.03 sec 255 ms

135 40 1 6 122 ms TO 1.46 sec
133 50 1 6 107 ms 1.45 min 704 ms
209 60 1 8 482 ms TO 1.94 sec
169 70 1 6 185 ms 46.49 sec 815 ms
194 80 1 7 208 ms 1.62 min 1.45 sec
246 90 1 6 406 ms 1.07 min 2.35 sec
327 100 1 7 855 ms TO 5.62 sec

n q n−q n+q
Symmetric
TSPTW[11]

Asymmetric
TSPTW[11]

TSPsTW

31 5 5 8 54 ms 10.42 min 152 ms
35 10 2 5 12 ms 4.33 sec 139 ms
51 15 1 6 40 ms 1.64 min 104 ms
95 20 2 9 76 ms TO 661 ms

151 30 2 9 215 ms TO 6.12 sec
184 40 1 9 275 ms TO 5.30 sec
219 50 1 11 474 ms TO 10.34 sec
269 60 1 9 497 ms TO 7.04 sec
300 70 2 11 926 ms TO 12.55 sec
355 80 1 8 935 ms TO 12.55 sec
415 90 2 11 1.39 sec TO 18.99 sec
447 100 1 10 1.67 sec TO 1.03 min

Table 1: Results of our computational experiments comparing our TSPsTW MILP with two MILPs from the liter-
ature on instances with up to 100 time windows and up to 447 customers. The time out TO is set to 20 minutes.

While the symmetric TSPTW MILP is clearly the fastest one, it also has the most narrow applicability. On the
one hand it is not possible to model an objective function considering the sum of travel times and on the other hand
the symmetric TSPTW MILP cannot handle asymmetric instances or instances for which the triangle inequalities
do not hold. These are a quite severe restrictions, see the last two paragraphs of Section 2 for further details.

The asymmetric TSPTW MILP is clearly outperformed by our TSPsTW MILP on all considered benchmark
instances. For the larger instances it often even does not find a feasible start solution until the time out. Hence in
summary the TSPsTW MILP is clearly the most appropriate exact approach for our shopping application, where
offering structured time windows instead of arbitrary ones is not a significant restriction for the supplier.

Further computational experiments show that the run times of our TSPsTW MILP solely depend on n and n+q .
Hence our MILP shows the same performance on benchmark instances with asymmetric travel times, independent
of the correctness of the triangle inequalities. We omit detailed computational results showcasing these properties
due to the space restrictions of this extended abstract.

5 Extension: Dependency Graphs
In this section we outline a concept for analyzing and illustrating the connection between the TSP, the TSPTW and
the TSPsTW. When considering structured time windows, it is easy to determine which edges between customers
are needed in the TSPsTW model. On the one hand we have to include all edges between ordered pairs of customers
assigned to the same time window and on the other hand we have to consider all directed edges going from customers
assigned to time window i to customers assigned to time window i+1 for i ∈ [q0].

For formalizing and generalizing the above description we introduce so-called dependency graphs G = (V,D),
where the set of vertices is equal to the set of time windows of the corresponding TSPTW instances, i.e. V =

[(q+1)0]. A directed edge between an ordered pair (a,b) of time windows is included in the edge set D, if there is
a customer from time window b who can be visited after a customer that is serviced during time window a.

Applying this definition the dependency graph of a TSPsTW instance is a directed line. Hence the TSPsTW can
be viewed as consisting of q connected TSPs (one for each time window) and therefore as an in-between of TSPTW
and TSP. In Figure 1 we illustrate the dependency graphs for three toy instances. Note that the dependency graphs
become quite dense as soon as there are only a few overlapping time windows.

Gendreau et al. [7] and Ascheuer et al. [1] propose preprocessing approaches using the start and end times of
time windows and the travel times for determining unnecessary edges of TSPTW models. Contrary to that our
dependency graphs display all edges that have to be contained in a TSPTW model:
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1. All edges between pairs of customers assigned to the same time window.

2. All directed edges between customers assigned to time windows that are connected by a directed edge in the
dependency graph. Note that as a further refinement we can additionally apply the preprocessing approaches
mentioned above to this edge set.

In summary dependency graphs can be used for easy identification of:

• Edges that must be included in the TSPTW model.

• Possible subtours, indicated by cycles in the dependency graph, which have to be prohibited by adding re-
spective subtour elimination constraints.

• The practical complexity of the TSPTW instance that is related to number of edges contained in the corres-
ponding dependency graph.

For determining dependency graphs of general, large-scale TSPTW instances we will propose a polynomial-time
algorithm for building them in our forthcoming paper.
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Figure 1: Dependency graphs for 3 instances with non-overlapping respectively partly overlapping time windows.

6 Conclusion & Outlook
In this extended abstract we presented first research findings derived within a common project with an international
supermarket chain dealing with determining efficient tours for supplying customers that are assigned to structured
time windows. We defined the Traveling Salesman Problem with structured Time Windows (TSPsTW) and sugges-
ted an easy to implement and nonetheless efficient mixed-integer linear program (MILP) for solving it. Additionally
we analyzed the relation of TSPsTW, TSPTW and TSP with the help of dependency graphs.

Over the following months we plan to build a journal paper on the material presented in this extended abstract.
In particular we plan the extend the applicability of our MILP in the following three directions:

1. Consider the on-line version of the TSPsTW, where customer requests are placed and processed by our MILP
in real-time.

2. Design both cluster-first route-second and route-first cluster-second approaches for the cVRPsTW, where our
MILP is used for determining efficient TSPsTW tours. Corresponding approaches for the standard VRP are
e.g. discussed in [6, 8, 14, 16] and [3, 13] respectively.

3. Integrate constraints for modeling multiple salesmen with assigned capacity restrictions into our MILP in
order to obtain a simple and efficient exact approach for the cVRPsTW.

Note that these extensions will also lead to a more comprehensive computational study of our TSPsTW MILP and
related approaches.
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1 Introduction and Problem Statement

The Technician Routing and Scheduling Problem (TRSP) is a common problem
for many companies that provide a variety of services to other companies or
private customers. Despite its complexities and its challenges, it has received a
limited attention from the research community. TRSPs consists in routing staff
to a set of locations in order to perform different tasks while satisfying resource
and skill constraints.

In this paper, we tackle a problem already presented in [2]. It is motivated
from an application in the maintenance and repair of electronic transaction
equipments. The problem can be defined as follows. There is a set of tech-
nicians with different skill levels available to carry out different tasks. A task
is created when a customer calls for maintenance of its equipment. Each task
has a priority level depending on its emergency and the importance of the cus-
tomer. One must then then assign the tasks to the technicians and build a
route for each technician, starting and ending at his home base location, so as
to minimize a given objective with terms for overtime, total traveled distance,
and total gain over the performed tasks. The solution must also satisfy differ-
ent constraints related to the required skills of the technicians to perform their
assigned tasks, working hours, multiple time windows, total distance traveled,
as well as availability of spare parts and special parts.

Two particular features distinguish this specific application from more generic
routing problems. First, the technicians’ schedules must account for complex
break constraints: during a workday, which normally lasts from 9 AM to 5 PM,
a technician performs some tasks and takes three breaks, a 15-minute break in
the morning and in the afternoon, and a mid-day break of 30 minutes, with
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suitable time windows. The second special feature is that some tasks require
so-called special parts, i.e., parts that are carried in a technician’s vehicle only
if one or more tasks along his route need them. Technicians must retrieve these
parts from a depot before performing these tasks. Furthermore, the solution
must also account for the inventory of spare parts carried by each technician.
Each technician starts his route with an initial inventory. If there are not enough
parts to serve all tasks, the technician can replenish this inventory once along
the route by going through a depot that has previously been assigned to him.

In [2], this problem was defined and solved with a commercial solver. This
allowed us to tackle routinely instances with 10 tasks. Larger instances, with up
to 20 or 25 tasks were also considered, but they could not usually be solved to
optimality even in computational times of several hours. The main contribution
of this work is to propose a specialized branch-and-price algorithm aimed at
solving exactly instances with a larger number of tasks in reasonable CPU times.

The remainder of this paper is organized as follows. In section 2, we briefly
review some related work. In section 3, we present the solution method. Some
computational results are reported in section 4.

2 Related Work

There are two broad categories of TRSPs: static TRSPs, in which all service
requests are known in advance, before routes are constructed, and dynamic
TRSPs, in which a fraction of the service requests occur dynamically. Several
authors (see, for instance, [5, 6]) have tackled static TRSP’s derived from a
variety of real-life settings in the late ’90’s and early 2000’s. In most cases, they
proposed solution methods based on local search and metaheuristics. More
recently, Tang et al. [4] addressed a periodic maintenance operations scheduling
problem and solved it with a tabu search heuristic. As for dynamic TRSPs,
they are beyond the scope of this paper.

3 Solution method

In [2], we proposed a direct mixed-integer programming (MIP) formulation for
the problem. Here, since we are interested in developing a branch-and-price
approach, we proceed differently and derive a set packing formulation together
with a route (column) generation subproblem.

The master (set packing) problem formulation is very simple: the decision
variables correspond to the possible (feasible) routes for each technician (we
must define a specific route set for each technician, since they operate from
their own home location and have different skills). The master problem is a
set packing one, because we do not need to cover all tasks: each task can
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be performed at most once and each technician can perform at most one of
his routes. To each route is associated a cost, which corresponds to the total
disutility associated with performing it (including a negative component for
the gain received for the tasks performed), and we minimize the total cost
of all routes. As in other column generation schemes for routing problems,
we consider at each iteration a restricted master problem (RMP), in which
only a (small) subset of routes are available for each technician, and solve its
linear relaxation RLMP. New routes for technicians are obtained through route
generation subproblems (one per technician)

We first include in RLMP a set of initial routes. It consists of one route per
technician. Each route starts and ends in the technician’s home location; we
then insert tasks one by one in the route according to their priority and taking
into account skills and time windows. In case of shortage of parts or if a task
needs a special tool, we plan a detour to the depot. The technician’s route ends
when we cannot insert any other task.

The route generation (pricing) problem associated with each technician aims
at the identification of feasible routes (for this specific technician), given the cur-
rent dual values associated with the constraints of the linear relaxation of the
RMP (RLMP). This problem can modeled as a shortest path problem with
various constraints pertaining to the tasks, the visits to the depot, the breaks,
time windows, workday duration, and total distance traveled. This subproblem
can be formulated as a MIP, which corresponds to a 1-technician version of the
model presented in [2] (if one drops the dual variables). This MIP formulation
is not practical for algorithmic purposes. We thus transform the problem into
the usual form of an Elementary Shortest Path Problem with Resource Con-
straints( ESPPRC). Here, paths start and finish at the technician’s location and
visit nodes associated with the depot and nodes. As one proceeds, information
associated with resources is stored in the labels. Each label stores the following
information: C, the reduced cost of the partial path; T , the time spent to exe-
cute the partial path; D, the remaining distance available; SP , the quantity of
spare parts available; F , a Boolean variable stating if the depot has been visited
or not for replenishment in this partial path. Labels also include information on
each task i stating whether or not this node is unreachable, i.e., if i has already
been visited on the partial path, or if traveling from the current position (depot
or another task) would violate its time windows, or the total distance permitted
per day, or if the technician does not have the required spare parts and has
already passed to the depot.

To solve this pricing problem, which is strongly NP-hard, we use two meth-
ods. The first one is based on the ESPPRC algorithm proposed by Feillet et
al. [1], which implements an exact dynamic programming procedure enhanced
by dominance rules to reduce the number of possible labels. The second ap-
proach relies on the Decremental State-Space Relaxation (DSSR) proposed by
[3]. DSSR considers a relaxation of the ESPPRC in which multiple visits to
nodes are possible. If cycles are found, the relaxation is tightened by consider-
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ing some tasks as critical and forbidding multiple visits to them.

To enforce integrality of the route selection variables in RLMP, we must im-
plement a suitable branching strategy. In fact, branching must be performed at
each node where the optimal solution of the linear relaxation includes fractional
route variables. We have decided to use a branching strategy that exploits par-
ticular features of our problem, namely the skill constraints. The basic idea in
our branching scheme is to assign tasks to specific technicians, based on their
skills. More precisely, when we encounter a fractional optimal solution in a node,
we branch on the (technician, task) pair with flow closest to 0.5. This flow is
obtained by summing the basic variables of the master problem associated with
the routes containing a given task i and a given technician k. The removal of a
task from the subproblem associated with a technician is much more restrictive
than the elimination of a single arc in standard branching shemes for routing
problems. We thus expect this strategy to be more effective than standard ones.
We have implemented two variants of this branching strategy: a binary one, in
which two nodes are created, one in which technician k is no longer allowed to
perform task i, and one in which task i must be performed by technician k; and
a ternary one, in which three nodes are created (here, the situation where tech-
nician k cannot to perform task i is split into two subcases: one in which task i
is not performed, and one in which task i is performed by another technician).

4 Computational results

To test the efficiency of our branch-and-price algorithm, we use the same in-
stances created by [2]. The main parameters of this instance generator are the
width of the time windows (Narrow or Wide), the size of the service area (a
square of 40 or 50 kms side), and the number of tasks.

We now report the results obtained on some of these instances. Branch-
and-Price was given a maximum of 24 hours of computation time on a 3.07GHz
Intel Xeon X5675 processor. We recall that each subset is made of 5 different
instances.

Table 1 presents a comparison between solving instances with up to 25 tasks
with CPLEX [2] and using the Branch-and-price algorithm. We limit ourselves
to these instances, because CPLEX cannot handle larger instances within 24
hours of computation. It is obvious that our specialized algorithm is much more
effective.

Detailed computational results for instances with up to 45 tasks will be
presented at the conference.
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Name CPLEX DSSR-Branch 2
# opt CPU # GAP # Opt CPU

N-40-10 5 839 0% 5 0.37
N-40-15 2(3) 59875 5% 5 0.87
N-40-20 0(5) - 10% 5 2.84
N-40-25 0(5) - 12% 5 61.43
N-50-10 5 542 0% 5 0.34
N-50-15 3(2) 29429 10% 5 0.53
N-50-20 1(4) 55029 17% 5 0.44
N-50-25 0(5) - 18% 5 0.3
W-40-10 5 745 0% 5 0.34
W-40-15 1(4) 46142 3% 5 1.2
W-40-20 0(5) - 9% 5 4.23
W-40-25 0(5) - 9% 5 153.73
W-50-10 5 633 0% 5 0.29
W-50-15 3(2) 25531 10% 5 0.52
W-50-20 1(4) 25370 17% 5 1.03
W-50-25 0(3) - 12% 5 7.86

Table 1: CPLEX vs B&P
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Multi-Modal Variations of the Vehicle Routing Problem
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Abstract

In this work, we extend the Vehicle Routing Problem formulation by proposing multi-modal variations of this
well-established problem. For these new formulations, we empirically show that a streamline metaheuristic
is able to highlight the potential benefit offered by the introduction of multi-modality.

Key words: Vehicle Routing, Multi-Modality, Dial-A-Ride-Problem.

1. Introduction

This study proposes a generalization of the static day-ahead Vehicle Routing Problem with Time Windows,
which consists in finding the set of routes of minimum cost that visit a set of jobs spread on a territory. Each
job has a given duration and a given time window. In the Vehicle Routing Problem (VRP) formulation, each
worker moves from one job to another by driving her/his assigned car. In this work, multi-modality (MM)
is possible as walking between jobs is allowed, and a car can transport multiple workers. These new features
are expected to help reducing both the driving distance and the number of cars used, which are the two main
objective functions minimized in the VRP literature [4], where usually, minimizing the number of vehicles
has the largest priority. This generalization is called the Multi-Modal Vehicle Routing Problem (MMVRP).

This project – with a preliminary version exposed in [1] – is motivated by the network of a large energy
provider (denoted as ABC: it cannot be named because of a non-disclosure agreement) in which the workers
have to visit clients to achieve various tasks (e.g., evaluate consumptions, upgrade consumer settings). ABC
has observed that their workers often leave their vehicle and perform clustered jobs on foot even if their
given planning would recommend to drive to their next jobs. This situation is enhanced in an urban context,
where distances between jobs can allow walking. Furthermore, when the parking spots are limited and when
the traffic jam is dense, walking could help reducing the high uncertainty affecting the car travel times.

2. Literature Review

In the context of home-care staff scheduling, a formulation that shows some similarities with the introduced
MMVRP is presented in [3], where nurses can walk between the patients locations. The main discrepancy
with our approach lies in the fact that nurses are not allowed driving a car, and their transportation between
jobs is ensured by an independent transportation system. Also, the main focus is put on the minimization
of the number of vehicles without considering any tradeoff with the overall driving distance. In the present
approach, the tradeoff between the reduction of vehicle and the total driving distance is analyzed.

Transporting the same worker along her/his schedule, with different vehicles, leads to a transportation
problem of persons. This is tackled in the literature as the Dial-A-Ride-Problem (DARP) [6]. MM raises
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Email addresses: marc-antoine.coindreau@unil.ch (Marc-Antoine Coindreau), olivier.gallay@unil.ch (Olivier

Gallay), n.zufferey@unige.ch (Nicolas Zufferey)



additional complexity to the DARP. First, all the routes that transport the same worker along her/his path
of jobs are interdependent, meaning that a delay in a route can potentially be propagated to all other routes.
This extends the DARP with a temporal precedence constraint between pick-up and delivery pairs. Second,
the set of pick-up and delivery locations is not given as an input but is part of the optimization process. The
only dependencies in the DARP context can be found in the DARP with transfers, where transportation
requests can be split into multiple routes. Dependencies appear explicitly at transfer points, as the pick-up
time at transfers depends on the previous associated deposit time.

A need for synchronization also appears in the so-called Vehicle Routing Problem with Trailers and Trans-
shipment (VRPTT) [2], where both autonomous (trucks) and non-autonomous (trailers) vehicles have to be
synchronized in order to complete the routing needs. In the MMVRP framework, while workers driving their
own car could be modeled as being autonomous, the workers without an assigned car cannot be considered
as non-autonomous. Indeed, these workers are semi-autonomous, as they need to be transported for longer
distances, whereas walking allows walking locally. Because of this important discrepancy, we cannot take
advantage of the VRPTT literature for tackling our problems.

3. Problem Formulation

Consider a set J of n jobs, a set W of workers, and a set K of homogeneous vehicles of capacity Q (the
number of workers that can be transported in the same car). Both workers and vehicles start and end their
working day at a central depot 0. Like the VRP, the MMVRP is defined on a complete graph G = (V,A),
where V = J ∪ {0} represents the set of nodes and A = {(i, j) | i, j ∈ V, i 6= j} represents the set of arcs.
With each arc (i, j) ∈ A is associated a driving time τdi,j , a walking time τwi,j and a distance di,j . With each
job j ∈ J is associated a processing time pj and a time window [ej , lj ]. A worker is allowed waiting at a node
in order to serve the associated job within its time window, and the daily walking distance of each worker is
upper-bounded.

In a MM context, the number |K| of cars can be lower than the number |W | of workers. Therefore, the
workers can be split into drivers and passengers. Drivers have to (1) perform their assigned jobs and (2)
fulfill transportation requests of passengers. Both driver and passenger workers can walk to reach a job, but
in the driver case, the return path to the car is mandatory. A walking path between consecutive jobs is
called a walking route (WR). In a MM solution, the jobs can be partitioned into WRs, and the WRs must be
partitioned in the workers planning. A WR is seen from the transportation point of view as a delivery (resp.
pick-up) point where the WR starts (resp. ends). In the driver case, the pick-up and delivery points are the
same. A WR can thus be agglomerated in two aggregated nodes (delivery and pick-up), the characteristics
of which (aggregated time window and total duration) are computed according to the ordered set of jobs
contained in the WR. The vehicles only visit these aggregated nodes, and the sequence of WRs in the workers
planning gives the set of all pick-ups and deliveries to be satisfied.

Three degrees of multi-modality are considered, ranging from (F1) to (F3). The goal is to first minimize
the amount of used resource (i.e., workers and vehicles), and next the total routing cost, which is directly
proportional to the driving distance. For each instance, anytime a feasible solution is found, a new instance
is generated by reducing either K or W by one unit (i.e., removing a car or a worker). The formulations are
the following. (F1) VRP: each worker is a driver, and a worker can only move using her/his assigned car.
(F2) MMVRP with |K| = |W |: while each worker has her/his assigned car, a worker can visit a set of jobs
by walking as long as her/his maximal walking distance is not reached. (F3) MMVRP with |K| < |W |: we
allow for the possibility to have fewer cars than workers, and thus a vehicle can transport multiples workers.
Each worker can walk to reach a job as long as her/his maximal walking distance is not reached.

4. Solution Method: Large Neighborhood Search and Job Best-Insertion Algorithm

LNS [7] aims at improving the current solution s by iteratively unbuild and rebuild it. At each step, q
(parameter) jobs are randomly removed from s and are then sequentially reinserted (in a best-insertion
fashion, see below) in order to get a new solution s′. LNS is embedded into a simulated annealing algorithm
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to decide with a certain probability whether to move (or not) the search from s to s′. In our implementation,
W and K are given for each instance. At each step of the LNS, q is an integer randomly selected in
{1, . . . , 0.2 · n}. In the simulated annealing, the initial temperature allows for a deterioration of 20% with a
probability 0.5, and the cooling is set such that the final temperature does not allow any deterioration.

To find the best position for inserting a job, all the eligible insertion positions are exhaustively tested. When
a job is inserted, different cases must be considered depending on the type of insertion performed (i.e.,
either in a driver or in a passenger planning). Each insertion type leads to an associated method. In a
MM context, we first check whether the insertion can be performed by extending an existing WR, or if a
new WR must be created for the job to be inserted. The feasibility of an extension can be easily tested
by updating the involved aggregated nodes at their specific positions in the route. But when a new WR is
created, the number of potential insertion positions quickly increases. Indeed, the new WR must first be
inserted in a worker planning (driver or passenger), and then this insertion must be evaluated within the
chosen route. In the driver case, the insertion is similar to the insertion in a VRP case (i.e., insert a node
in a route). The number of tests to perform is in O(n). In the passenger case, the insertion turns out to
be more complicated. Assume that the new WR (denoted as ωj) is introduced between WRs ωi and ωi+1

in a passenger planning. The transportation between the pick-up P (ωi) at the end of ωi and the delivery
D(ωi+1) at the beginning of ωi+1 becomes obsolete and must thus be removed from the partial solution.
Consequently, two new transportation requests must be satisfied: (P (ωi)→ D(ωj)) and (P (ωj)→ D(ωi+1)).
In this case, the number of tests to be performed is in O(n4). To tackle this large complexity, we adapt
the fast feasibility-check procedure introduced in [5], which allows verifying in constant time if inserting two
pick-up and delivery pairs is feasible. To further reduce the number of feasible insertions to test, necessary
conditions and filters are used to focus on the most promising insertions. For instance, we only test the five
positions i that minimize dP (ωi),D(ωj) + dP (ωj),D(ωi+1).

5. Computational Results

The instances are generated based on the real cases faced by ABC. The considered urban territory is modeled
by a square grid of 10km × 10km, where the random locations of the n jobs are uniformly distributed. This
situation obviously allows walking between some pairs of jobs. The duration of each job is randomly generated
between 15 and 34 minutes, and the same time window [8am, 5:30pm] is considered for each job (in order
to enrich the resulting solution space). In an urban context, the average vehicle speed is set to 30km/h, and
the walking speed to 4km/h. The upper bound on the daily walking distance is set to 5km, and each vehicle
can transport Q = 2 workers. The time limit of the LNS is n minutes (i.e., it is proportional to the instance
size). For each considered n ∈ {25, 45, 65, 85}, five instances are generated (with different job configurations
on the grid), on which 10 LNS runs are performed. The used computer is a 3.4 GHz Intel Quad-core i7 with
8 GB DDR3 of RAM memory.

The results are presented in Table 1, where the above (resp. below) part represents formulation (F2) (resp.
(F3)). First, the instance characteristics are given, namely n, |W | and |K|. It means that for each instance,
the available resource W and K is known. Therefore, only the transportation costs have to be minimized.
The value of |W | is the smallest obtained feasible value for (F1) with respect to n. Next, the average
(over the five configurations associated with each triplet (n, |W |, |K|), and over the ten runs) percentage
gap is given with respect to the (F1) solution values. For instance, in the case (n, |W |) = (25, 2): (1) no
feasible solution was found for (F1) with |K| = |W | = 1; (2) formulation (F2) reduces the solution values
by 6.5%; (3) formulation (F3) leads to a 2.6%-augmentation of the transportation costs but one vehicle is
saved. Finally, in the last column, the same information (i.e., gaps) is provided, but for the most clustered
configuration (as it allows better highlighting the MM potential benefit). Consider the fifth column involving
all the configurations. On the one hand, for formulation (F2), the transportation cost improvement (versus
the classical VRP formulation (F1)) increases with n, which confirms the benefit of allowing walking routes.
On the other hand, considering formulation (F3) (again versus (F1)), one vehicle can be saved if additional
transportation costs are encountered. The transportation costs degradation augments with n, which probably
indicates the increasing complexity of larger problems. It however opens the door to interesting tradeoffs
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between the transportation costs and the total used resource. Indeed, company ABC is likely to accept
a reasonable augmentation of the transportation costs if a vehicle can be saved. When considering the
sixth column, the same trend is observed for formulation (F2) versus (F1). Interestingly, it appears that
formulation (F3) can simultaneously reduce the number of vehicles as well as the transportation costs! The
sixth column of Table 1 gives the average value obtained for the 10 runs performed on the most clustered
configuration. For formulation (F3), we observe a decreasing quality of the solutions when the instance
size increases. We conjecture that this is more a consequence of the limited performance of the used basic
metaheuristic than of the capacity of multi-modality to reduce the driving costs. Indeed, the complexity of
managing passenger workers increases drastically with the instance size, which directly impacts the efficiency
of the solution method and its robustness.

Table 1: VRP versus MMVRP

Formulation n |W | |K| % gap (5 configurations) % gap (most clustered configuration)

F2 25 2 2 −6.5% −7.4%

45 3 3 −8.7% −7.5%

65 4 4 −13% −12.5%

85 5 5 −11.2% −9.3%

F3 25 2 1 2.6% −2.3%

45 3 2 14.9% −4.7%

65 4 3 18.9% −0.2%

85 5 4 42.9% 22%

Table 2 compares the average value, the best value and the standard deviation σ obtained over the 10 runs,
for the most clustered configuration with n = 45. The σ-value is low for (F1) and (F2), which is likely to
indicate efficient and robust solutions. The larger σ-value for (F3) highlights the additional complexity and
the need for a more specialized metaheuristic. Considering the best solutions (column 6), we have observed
that increasing multi-modality can lead to both a shorter driving distance (the improvement gap of (F3) can
be up to 10.8% with respect to (F1) and up to 3.6% with respect to (F2)) and a reduced fleet of vehicles
(one car is saved). These three best solutions are shown in Figure 1. We can graphically observe that (F2)
allows decreasing the driving distance when compared to (F1), as some trips are walked instead of driven.
The driving distance can be further decreased in formulation (F3). Indeed, the detours generated to drop
(resp. pick-up) the passenger worker at job 15 (resp. job 5) are overbalanced by the gain obtained by the
simultaneous presence of two workers in the same car for part of the routing.

Table 2: Detailed results for the most clustered configuration when n = 45

Formulation n |W | |K| average distance (km) best found (km) σ

F1 45 3 3 61.79 61.71 0.19

F2 45 3 3 57.15 57.08 0.09

F3 45 3 2 58.91 55.04 3.31

6. Conclusions and Future Works

In this study, a first step is performed in multi-modal vehicle routing, motivated by a real situation. It
was numerically shown that using two travel modes (namely by car and on foot) instead of only one can be
beneficial in terms of the total transportation costs and according to the employed resource (for instance,
a reduced fleet of vehicles). A conservative case was however considered here, as congestion and parking
spots limitation are not taken into account, and as the density of jobs is rather small (less than 1 job per
km2). Our observations might thus be amplified in such situations. Following these encouraging results,
upcoming effort will be devoted to the development of a set of efficient metaheuristics for larger instances.
Another avenue of research consists in considering additional transportation modes for the involved workers,
for example taxi service or an external transportation company, particularly if it allows reducing the fleet of
vehicles at a reasonable additional cost.
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Figure 1: Best solutions for formulations (F1), (F2) and (F3) for the most clustered configuration with n = 45. Dashed lines
correspond to walking paths, whereas solid lines indicate travels by cars.
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Multi-Commodity Two-Echelon Vehicle Routing

Problem with Time Windows

F. Dashti Saridarq, N. Dellaert, T. Van Woensel and T.G. Crainic

The two-echelon vehicle routing problem (2E-VRP) is a two-echelon distri-
bution system where goods are transferred to customers by using intermediate
facilities (called satellites). There are three types of facilities that are located in
a hierarchical structure: (i) Depots act as the sources of goods and are located
at the first level; (ii) Satellites are used to consolidate goods and are located
at the second level; (iii) Final customers are located at the last level and are
destinations of the goods. The first echelon of the 2E-VRP consists of vehicle
routes where each route starts (and ends) at a depot and delivers a subset of
goods to a subset of satellites. The second echelon consists of vehicle routes
where each route starts and ends at the same satellite and delivers goods to
their associated customers.

Most of the existing studies in the field of 2E-VRP have focused on the basic
variant of the problem without origin-destination structure for demands, i.e, all
demands are considered fully substitutable. In practice, this assumption is not
realistic. Clearly, solutions derived from existing models to the 2E-VRP could
be infeasible when implemented in real life. For example in parcel delivery ap-
plication, each parcel should be picked up from a specific origin and be delivered
to a specific customer destination and thus the parcels are non-substitutable.

The problem under study is particularly motivated by two-echelon city lo-
gistics systems where the loads of different shippers are consolidated and dis-
tributed to customers through intermediate facilities. Therefore, the decision
makers usually deal with origin-destination demands where each demand starts
from a specific depot and is supposed to be delivered to a specific customer. A
demand is a unique load (a specific parcel or package). We take non-substitutable
demands into account by introducing commodities: a commodity consists of
the destination customer, origin depot, a specific volume, and a time window
which the delivery should take place within. The described problem is referred
as the multi-commodity two-echelon vehicle routing problem with time win-
dows (MC-2E-VRPTW). Although some papers introduced the concept of non-
substitutable demand [1], this is the first paper that considers non-substitutable
origin-destination demands for the 2E-VRP.

The objective of this paper is to introduce the MC-2E-VRPTW and develop
exact solution methods. The problem is defined and mathematically formulated
as a mixed integer programming problem. Specifically, a combined arc-and-path
based formulation is presented which employs arc-flow variables for the first
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echelon and path variables for the second echelon. A branch-and-price algorithm
is presented based on this specific formulation. Throughout this paper, we refer
to the first and second echelon vehicles as urban vehicles and city freighters
respectively using the terminology proposed by [2].

To sum up, the contributions of this paper are as follows:

1. The literature on 2E-VRP has only focused on the single commodity vari-
ant of the problem which does not represent the non-substitutable de-
mands arises in city logistics. We introduce the MC-2E-VRPTW which
considers origin-destination structure for demands by employing multi-
ple commodities. We investigate the problem from an exact optimization
point of view and propose mathematical formulations and a branch-and-
price algorithm. Specifically:

(a) A combined arc-and-path based formulation is designed where arc-
flow variables are used for the first echelon and path variables are
used for the second echelon (denoted as the multi-commodity two-
echelon combined arc-and-path based formulation, or MC2E-A-P).

(b) A branch-and-price algorithm is proposed which works on this formu-
lation. A column generation method and specific branching strategies
are introduced for the proposed algorithm.

2. The numerical evaluation through a large set of instances demonstrates the
power of the newly developed model and the respective solution method.
We study how large instances can be solved using the proposed branch-
and-price algorithm for the arc-path-based formulation.

1 Problem description

The MC-2E-VRPTW deals with multiple commodities. Each commodity (a
demand request of a specific customer which should be transfered from a specific
depot) should be shipped employing an urban vehicle (first echelon vehicle) and
a city freighter (second echelon vehicle) which are connected through a satellite.
Without loss of generality, we assume that each commodity is coupled with a
customer. Note that, a customer demanding multiple commodities could be
represented by multiple copies of the same customer as we do not consider
split delivery. Therefore, each customer has a demand of one commodity which
should be transfered from a particular depot without any preference for the
satellite. Such a demand request consists of the size of the demand and also a
hard time windows (the delivery of the commodity is not allowed either before
the start of the window or after the end of this window).

We assume that these commodities are available at the start of the planning
horizon. Thus, no service time is considered for depots. Satellites can handle
any commodity without any constraint on the number of arriving urban vehicles
or departing city freighters or the amount of the freight. There is no explicit
time window for satellites. Each satellite is open and ready to service during the
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planning horizon without any fixed or variable cost. A service time is considered
for each satellite where the de-consolidation and consolidation should occur
within this period. In a similar way, a service time is required to unload the
commodity from a city freighter and deliver it to a customer.

De-consolidation and consolidation activities requires a connection and syn-
chronization between the urban vehicle and the city freighter which are used to
transfer the same commodity: (i) Connection: the urban vehicle should deliver
the commodity to the starting satellite of the the city freighter; and (ii) Syn-
chronization: the departure time of the city freighter should be greater than the
arrival time of the urban vehicle to the satellite (clearly, a city freighter which
is transferring a subset of commodities should wait for the arrival of all urban
vehicles which brings at least on of these commodities).

A solution for the problem consists of the first echelon routing decisions and
the second echelon routing decisions such that these two echelon routings are
connected and synchronized. Therefore, an optimal solution of the problem
consists of the vehicle tours of both echelons such that each commodity is de-
livered to its associated customer through a satellite, while the time windows
of customers are respected and the total transportation costs are minimized.
Figure 1 shows an example of the problem with 3 depots {A,B,C}, 4 satellites
{i, ii, iii, iv} and 8 customers {1, ..., 8}. A possible feasible solution is shown,
which consists of three urban vehicle tours and five city freighter tours. An
example of the de-consolidation and consolidation activities can be observed at
satellite (ii) where the commodities of customers {2, 3, 4, 5} delivered by two
urban vehicle tours, originating from depots A and B, are de-consolidated and
consolidated to two city freighter tours to finally deliver them to the customers.

A B C

i ii iviii

1 2 3 4 5 6 7 8

1,3,5 2,4,7 6,8

Figure 1: A MC2E-CVRPTW instance
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2 Mathematical formulation

There are two extremes in modeling routing problems: (i) The arc-based models
use arc-flow variables to present the flow on each arc and employs constraints to
build route; (ii) The path-based models use path-flow variables to present the
routing. We use a middle-ground approach to propose a combined arc-path-
based model which benefits from advantages of both extremes. Particularly,
it employs arc-flow variables for the first echelon routing problem and path
variables for the second echelon routing problem. Note that, in practice, the
number of satellites and depots is usually less than the number of customers.
Therefore, the number of constraints to represent urban vehicle (first echelon
vehicles) tours is not very huge. The full formulation will be discussed in the
presentation and the full paper.

3 Branch-and-price

The proposed algorithm is based on a column generation method (see [4] for
an overview) which computes the lower bounds. At each node of a branch-and-
bound tree, a restricted master problem (RMP) is achieved by replacing the set
of city freighter tours L by a subset L′ ⊂ L at the LP-relaxation of the MC2E-A-
P formulation. However, we insert all first echelon routing arc variables, second
echelon timing variables and the commodity-satellite assignment variables to
the model. Two heuristics and one exact algorithm are used to solve a pricing
problem to generate negative reduced cost city freighter tours.

We use multiple branching strategies to deal with fractional values of the
decision variables. These branching strategies can be categorized in three main
categories:

• First echelon routing variables,

• Commodity-satellite assignment variables,

• Second echelon routing variables (number of selected city freighter tours
and second echelon arc)

4 Computational study

Detailed results and insights based on an extensive instance set (inspired based
on [3]) will be provided on the conference and in the full paper.

References

[1] T. G. Crainic, N. Ricciardi, and G. Storchi. Models for evaluating and
planning city logistics systems. Transportation Sci., 43(4):432–454, 2009.

4



[2] T. G. Crainic, A. Sforza, and C. Sterle. Location-routing models for two-
echelon freight distribution system design. Technical report CIRRELT-2011-
40, CIRRELT, Montréal, 2011.
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Abstract

The Vehicle Routing Problem with Private Fleet and Common Car-
rier (VRPPC) is a generalization of the classical Vehicle Routing Problem
where the owner of a private fleet can either visit a customer with one
of his vehicles or assign the customer to a common carrier. The latter
case occurs if the demand exceeds the total capacity of the private fleet
or if it is more economically convenient to do so. The owners objective
is to minimize the variable and fixed costs for operating his fleet plus the
total costs charged by the common carrier. This family of problems has
many practical applications, particularly in the design of last mile distri-
bution services, and has received some attention in the literature, where
some heuristics were proposed. We present an exact approach based on a
branch-and-cut-and-price algorithm for the VRPPC and for a more gen-
eral and practical case where the cost charged by the external common
carrier is based on cost structures inspired from practice.

Keywords: Vehicle Routing, Exact Algorithms, Private Fleet and
Common Carriers.

1 Introduction

We consider the Vehicle Routing Problem with Private Fleet and Common
Carrier (VRPPC) which is a generalization of the classical Vehicle Routing
Problem where the dispatcher may either serve the customers by using the
vehicles of the owned fleet (called the private fleet) or assign them to a common
carrier, e.g. a third-party logistics provider. The latter case occurs when either
the total customers’ demand exceeds the capacity of the private fleet or if it is
more economically convenient to do so, e.g. because the customer is isolated
and far from the private fleet depot.
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This type of problems has many practical applications, particularly in the
design of last-mile distribution services where outsourcing of unprofitable ser-
vices are frequently considered options, and has received some attention in the
recent literature. Chu [2005] considered a single depot routing problem with
outsourcing options which can be considered the first paper on VRPPC. The
problem considers a private fleet of vehicles with limited capacity and fixed costs
associated with their use. A set of customers with known demand can be served
by the private fleet which incurs travel costs as in the standard VRP. In addi-
tion, customers may be outsourced to a common carrier for which only a fixed
cost per customer has to be paid. The objective is to minimize the total costs of
the carrier involving fixed costs for vehicles, variable travel costs and fixed costs
for orders performed by the common carrier. Chu [2005] proposed a heuris-
tic solution method, consisting of a modified savings algorithm [see Clarke and
Wright, 1964] and a simple improvement phase, that was tested on 5 instances.
Bolduc et al. [2008] showed that the VRPPC can be modeled as an heteroge-
neous VRP, and presented a metaheuristic based on a perturbation procedure,
substantially improving the results of Chu [2005]. In addition, they provided
results of their algorithm for two new benchmark sets, one with homogeneous
and one with heterogeneous vehicle fleet, with up to 480 customers. A tabu
search heuristic for the VRPPC, which outperformed the approach of Bolduc
et al. [2008] for the case of homogeneous vehicles was presented in Côté and
Potvin [2009]. Furthermore, Potvin and Naud [2010] proposed a tabu search
heuristic with ejection chains that further improved results on both homoge-
neous and heterogeneous instances, at the expense of significantly larger total
computing times. More recently, Stenger et al. [2013] introduced a multiple-
depot version of the problem denoted as MDVRPPC, for which they defined a
variable neighborhood search algorithm. The resulting algorithm was tested on
a benchmark set of instances derived from Multi-Depot VRP (MDVRP) ones
showing the potential benefits associated with subcontracting. The algorithm
is also capable of obtaining state-of-the-art results on both the single depot
VRPPC. To the best of our knowledge no exact algorithm has been proposed
so far for the VRPPC or its variants. The problem under study is also related
to the wide family of VRP with Profits: we refer the interested reader to the
survey of ? for an overview of the literature in this field.

We present here an exact approach based on a branch-and-cut-and-price
algorithm for the VRPPC and for a more general and practical case where time
windows and heterogeneous fleet are present and the cost charged by the external
common carrier is based on cost structures inspired from practice. We call for
short our problem Rich VRPPC (RVRPPC) because it contains as special cases
the known variants of VRPPC with single depot. In the following we outline
the solution approach and the results of a computational testing.
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2 Problem Definition and Solution Approach

We consider a directed graph G(V ′, A), where V ′ is a set of vertices correspond-
ing to the customers and the depot (vertex 0), and A is the set of all feasible
arcs. For all i ∈ V ′ let di, TWi and si denote the demand, time window and ser-
vice time, respectively. For all (i, j) ∈ A: cij and τij are traveling cost and time
from i to j. We also consider a limited heterogeneous private fleet of vehicles in
which each vehicle k ∈ K has finite capacity Qk and fixed cost fk, whereas the
common carrier charges a cost based on the total quantity subcontracted. More
precisely, the subcontracting cost is expressed by a piecewise linear function c(d)
of the total demand d of the customers to be subcontracted, hence the cost of
outsourcing an order is not known in advance.

We define a Branch-and-Cut-and-Price approach based on a set-partitioning
formulation as commonly done for the VRP. Because of the special structure of
the problem the algorithm incorporates separate dedicate pricing procedures for
the private fleet routes and for the subcontracted service. The first one is based
on the solution of Resource-Constrained Shortest Paths with the ng-path re-
laxation, while the second pricing problem calls for the solution of Generalized
Knapsack Problems with variable capacity. The formulation is strengthened
through valid inequalities and specialized branching strategies are developed.
Finally, a second set-partitioning formulation is developed in which the out-
sourcing option is implicitly modeled so as to reduce the symmetry of the for-
mulation.

3 Computational Testing

Figure 1: Solution of instance R102.50

The algorithm is tested on a set of instances derived from the classical ones
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from the literature both uniformly distributed and with clustered structures.
As expected the results show a positive impact of the introduction of the out-
sourcing option, both in terms of overall cost savings and of the productivity of
the private fleet. Such impact is larger on randomly distributed instances but
is interesting also in clustered ones. An example of solution for a 50 customers
instance is depicted in Figure 1 where it is clearly visible that the subcontracted
customers are mostly peripheral and relatively isolated. An extensive testing of
the sensitivity with respect to the relative ratio between the private fleet service
costs and the subcontracting costs.
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1 Introduction

Dynamic routing problems are problems in which a set of geographically dispersed customers is visited by

one or more travelers or vehicles. The problems are dynamic in that problem information changes over

the horizon of the problem and there exist opportunities to make decisions in response to the revealed

information. While dynamic vehicle routing has a 30 year history in the operations research literature,

the majority of research in the field has been published in only the last few years. For example, 51

out of a total of 117 dynamic routing papers cited in Psaraftis et al. (2016) have been published since

2012. This trend is likely to accelerate. Recent advances in data availability and computing power

offer increasing opportunities as well as accompanying challenges for integrating predictive tools with

prescriptive optimization methods to anticipate and dynamically respond to uncertain events.

A good starting point is a unified framework for modeling dynamic routing problems. A unified

modeling framework allows researchers to express their problems in a common language that allows for

better identifying contrasts with existing work and also opportunities to derive new work from the existing.

In many disciplines, Markov decision processes (MDPs) are the natural modeling language for stochastic

and dynamic problems. Powell et al. (2012) argues that MDPs also offer a natural modeling framework

for such problems in transportation, including routing problems.

Traditionally, however, MDPs model decision making that is made sequentially in response to new

information. Rather, MDPs for dynamic routing problems tend to model actions in terms of the next

customer to visit. Yet, while routes are executed sequentially, or customer by customer, the vast majority

of the routing literature develops plans for future visits and uses the plans to guide the execution. While

such solution approaches are natural for deterministic problems, many approaches to dynamic problems

carry the concept of a tentative route plan into the dynamic problem, even though such route plans are

not necessarily fixed.

In part, maintaining route plan in approaches to dynamic routing problems is natural. For one, the
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research community is conditioned to think about the solutions to even dynamic routing problems as

routes, even if such routes will change as new information becomes available. Second, with the rich

literature devoted to deterministic routing, it is natural that we would want to use the solution approaches

originally developed for deterministic problems, which operate on routes, in the solution of dynamic

problems. Thus, in the same way that a set covering formulation supports a column generation approach

for a deterministic vehicle routing problem, our models for dynamic problems should support the chosen

solution approach as well. Yet, conventional MDPs do not naturally model the evolution of a route. Thus,

there is a disconnect between our models for dynamic routing problems and the solutions approaches.

In this talk, we present a unified modeling framework for dynamic and stochastic vehicle routing

problems (DVRP) that allows authors to model the evolution of routes. The framework transforms

traditional MDPs into route-based MDPs by storing information about the planned routes. The route-

based MDP model augments the MDP actions to the selection of updated routes. Given the notion of

planned routes, the current period reward (cost) is redefined as a marginal reward to account for changes

in the plan. The route-based formulation allows the MDP model to reflect that solution approaches often

make use of planned routes.

This talk makes the following contributions. First, it presents an MDP model for dynamic routing

that is based on traditional routing plans. Second, we prove the equivalence of the two formulations.

Third, we present an example of a DVRPs from the literature and shows how it can be modeled using

the route-based formulation. We also demonstrate how the route-based formulation aligns the solution

approach to the route-based MDP.

2 Illustrative Example

For this purposes of this abstract, we use illustrations to demonstrate the differences between conventional

and route-based MDP models. The purpose of the illustrations is to give readers, particularly those

unfamiliar with MDPs, a conceptual understanding of the two models. In subsequent sections we will

provide formal notation for both conventional MDPs and route-based MDPs.

For concreteness, we use the vehicle routing problem with stochastic service requests (VRPSSR) as a

framework for our illustration. The VRPSSR is a DVRP, and variants of the VRPSSR are often considered

in the literature. Our VRPSSR is characterized by the need to dynamically route one uncapacitated

vehicle to meet service calls arriving randomly over a working day of duration T and from a set of potential

customers. The vehicle serves customers as long as time permits. We denote the known customer locations

by the set N = {0, 1, . . . , N}, where 0 represents a depot and the remaining locations represent customers.

Although the location of each customer in N is known, whether or not a customer requests service is

uncertain. The known travel time between two locations n and n′ in N is denoted d(n, n′). For each

customer served, we earn a reward of 1. Requests not serviced by the vehicle are visited via a third party.

The objective is to maximize the expected number of serviced customers.

The following subsections illustrate the conventional MDP for the VRPSSR and the route-based MDP,

respectively. Each illustration has three parts and illustrates a single decision making episode using each

MDP model. The first part, the left-hand side of each illustration, illustrates the state of the system
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Figure 1: Illustration of a Conventional MDP

at a point in time in which a decision is to be made. The state of an MDP is a set of information that

represents all of the information that is necessary for the decision maker to make an optimal decision. In

the second panel of each illustration, we illustrate the decision that is made given the state of the system

shown in the first panel. Finally, the panel on the right-hand side of each illustration demonstrates a new

state of the system that results from the observation of new exogenous information, which in this case is

the realization of new customer requests.

2.1 Conventional MDP Illustration

Figure 1 illustrates the conventional MDP model. We consider a situation in which there are nine known

customers. The customers are depicted as 1 through 9 in each of the three panels of Figure 1. The

left-most panel of Figure 1 shows the situation at time 20. At this time, the vehicle is located at Customer

4, customers 8 and 9 have not requested service, customers 2, 3, 5, 6, and 7 have requested service but

have not yet been visited, and Customer 1 has already received service. The time, the vehicle location,

and the customer statuses constitute the state of the system. With the information given in the state, we

make a decision. For the purposes of this example, we assume that we choose to travel to Customer 2,

a customer who has requested service but who has not yet been visited. We will refer to this decision

as x = 2. We represent this decision by a solid line connecting the current vehicle location at Customer

4 and the next location at Customer 2. To execute the decision, the vehicle travels to Customer 2. We

assume that the vehicle traverses a Manhattan-style grid where each edge requires 10 time units. We

illustrate the arrival to Customer 2 at time 40 in the panel of the right-hand side of Figure 1. At this

time, we also observe any new requests, the random information ω, that occurred between the departure

form Customer 4 at time 20 and the arrival to Customer 2 at time 40. At this point, we have a new state

where the vehicle is located at Customer 2, Customer 4 has now been visited, and Customer 8 has just

requested service but has not yet been served. Customers 3, 5, 6, and 7 have also requested service but

have not yet been visited, and Customer 1 has already received service.
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Figure 2: Illustration of a Route-Based MDP

2.2 Route-based MDP Illustration

Looking at the illustration given in Figure 1, we can observe a gap between the problem formulation

and the way that most practitioners as well as almost all of the solution approaches in the literature

view the problem. Notably, Figure 1 does not present a route, even only a planned route through known

customers. Almost all of the literature for the VRPSSR apply approaches that, at each decision epoch do

not merely decide about the next customer to visit, but also determine a set planned of routes. These

plans reflect planned future steps. For the VRPSSR, a plan usually contains a sequence of unserved

customers ending in the depot. The plan then induces the actual routing action. In a subsequent decision

epoch, the remainder of the former plan is updated.

The goal of the route-based MDP model is to close the gap. Figure 2 presents the analogous illustration

as Figure 1, but using a route-based MDP. The left-most panel of Figure 2 shows the same situation at

time 20 as Figure 1. However, it also illustrates the additional piece of information, the route, associated

with the state of the route-based MDP model. At the current state at time 20, the proposed route travels

from the current location of the vehicle at Customer 4 to Customer 3, then Customer 5, and back to the

depot. Despite the planned tour depicted in the leftmost panel of Figure 2, the decision in the route-based

case is also to travel to Customer 2. This decision is depicted by the solid line from Customer 4 to

Customer 2 in the middle panel of Figure 2. In contrast to the analogous panel in Figure 1, the middle

panel of Figure 2 also depicts the updated routes associated with the route-based MDP. With the choice

to go from Customer 4 to Customer 2, the planned route continues from Customer 2 to Customers 7, 6,

and 5 before returning to the depot. While Customer 9 has not yet requested service, we note that this

new planned route puts the vehicle in a position to serve Customer 9 if Customer 9 does request service.

Finally, the panel on the right-hand side of Figure 2 shows the state of the route-based MDP at time 40

when the vehicle arrives at Customer 2. At this point, Customer 8 has requested service and the planned

route through customers 7, 6, and 5 before returning to the depot is shown.

In both Figures 1 and 2, the immediate action, that of traveling to Customer 2, is the same. However,

Figure 2 combines the action with a route plan. This route plan allows the route-based formulation to

connect with the solution approaches in much of the related literature. Further, as demonstrated by the
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route plan and Customer 9 in Figure 2, the route plans can be an indicator of the potential impact of

future realizations.

A key feature of the route-based model is the definition of the reward. We can incorporate the value

of the route plans into the reward by redefining the reward as a marginal reward. This marginal reward

accounts for the difference in value between the previous plan and the new plan as well as immediate

contributions by the current period action. Importantly, this redefinition of the reward allows us to

maintain an equivalence between the two models. Figure 3 shows that the accumulated rewards between

the two models are the same at the end of the horizon. Thus, the two models are equivalent. The talk

will present a formal proof of this result.

References

Warren B Powell, Hugo P Simao, and Belgacem Bouzaiene-Ayari. Approximate dynamic programming in
transportation and logistics: a unified framework. EURO Journal on Transportation and Logistics, 1(3):
237–284, 2012.

Harilaos N Psaraftis, Min Wen, and Christos A Kontovas. Dynamic vehicle routing problems: Three
decades and counting. Networks, 67(1):3–31, 2016.



Scalable anticipatory policies for the dynamic and stochastic pickup

and delivery problem

Gianpaolo Ghiani1, Emanuele Manni1,∗, Alessandro Romano1

1Dipartimento di Ingegneria dell’Innovazione, Università del Salento
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1. Introduction

In this paper, we deal with the dynamic and stochastic Pickup and Delivery Problem (PDP) in which a

fleet of vehicles must service a set of customers’ requests characterized by a pickup and a delivery location,

as well as by a priority class. The goal is to maximize the overall customer service level or, equivalently, to

minimize customer inconvenience. The problem is dynamic in that customers’ requests are disclosed during

the planning horizon, whereas it is stochastic because we assume that the requests arrive according to a

known stochastic process. This type of problem occurs in several sectors (e.g., in the couriers industry or in

emergency systems). Nowadays, the huge advances in communication and information technologies allow to

obtain in real-time data on vehicles locations and customers requests. This continuous flow of data allows

the dispatchers to modify the vehicle routes in real time. At each stage it is important to make accurate

decisions, since a bad choice in the present might affect the ability to make good decisions in the future. For

this class of problems two kinds of policies are common in the literature: (i) reactive policies which manage

new requests only once they have occurred, neglecting any available stochastic information; (ii) anticipatory

algorithms which exploit the stochastic characterization of future demand, in an attempt of anticipating it, to

provide the highest possible quality of service. Reactive policies are typically characterized by extremely fast

running times, which are obtained at the expenses of solution quality, because of the myopic choices made

at each stage. On the other hand, anticipatory procedures generally achieve better results than reactive

algorithms, but with longer running times because of the need to simulate multiple scenarios. Detailed

surveys can be found in [4] and [5]. In this paper we propose two dispatching policies that have a twofold

goal. Trading off between the two extremes previously described, the first aim is to match the quality of

anticipatory algorithms with a computational effort comparable to that of reactive approaches. The second

goal is to achieve scalable performances, meant as the ability to easily deal with instances of increasing size.

The remainder of the paper is organized as follows. In Section 2 we describe the problem and in Section

3 we present our dispatching policies, whereas in Section 4 we illustrate our computational experiments.

2. Problem description

In our formulation of the dynamic and stochastic PDP, we assume that the entire territory is represented

by a rectangular area with given height h and width w, so that a generic point a (pickup, delivery, depots

and vehicles’ positions) is identified by means of its Cartesian coordinates (xa, ya). The time tab needed to
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go from an origin a to a destination b is derived from some metrics, e.g. is obtained by using the Euclidean

distance between the two points and considering a given fixed speed. We assume there is a fleet of m vehicles,

each of which is located at a depot (not necessarily the same for all the vehicles) at the beginning of the

planning horizon. In addition, vehicle routes must meet the following constraints: (a) each route starts and

ends at a depot; (b) the pickup and the delivery points of a request must be visited by the same vehicle;

(c) a pickup point must precede its associated delivery point; (d) a vehicle cannot be diverted from its next

destination to service a new request. The customers (and therefore their service requests) are classified into a

number C of classes, according to their “importance”. Without any loss of generality, we assume that classes

are ordered according to a decreasing priority. In general, the k-th request (k = 1, 2, . . . ) is characterized

by (i+k , i
−
k , ck, tk), where i+k = (x+k , y

+
k ) are the coordinates of the pickup point, i−k = (x−k , y

−
k ) are the

coordinates of the delivery point, ck ∈ {1, . . . , C} is the class of the request, tk ≥ 0 is the occurrence time of

the request. We assume that the requests are independent and uniformly distributed over the service territory

and arrive according to a known stochastic process. Our goal is to maximize the customer satisfaction by

minimizing the sum of the inconveniences of the requests, that are calculated differently according to the

class the request belongs to. More specifically, we denote by f(τk,wk) the penalty function measuring the

inconvenience associated with the k-th request, defined as:

f(τk,wk) =

0 tk ≤ τk < Dk

pck(τk −Dk) τk ≥ Dk.

Here, τk is the delivery instant and wk = (lck , pck). In particular, lck ≥ 0 is the amount of time (after tk)

after which the penalty starts to be counted, determining a soft deadline Dk = tk + lck . Finally, pck ≥ 0 is

the slope of the penalty function. Then, the objective function is: min z =
∑
k

f(τk,wk).

3. Dispatching policies

The fact of considering several classes of customers characterized by different penalty functions is a

common practice, for instance, in same-day delivery services. To give an idea, let us consider the case with

C = 2, where: c = 1 refers to top-priority customers (that typically sign Service Level Agreements with the

delivery companies), whose service must be performed within a very short amount of time from the instant

of booking to avoid incurring in high penalties; c = 2 denotes spot customers, for which time windows are

quite large and penalties are not significant. Top-priority customers are typically a small fraction of the total

demand, but may have a huge impact on the total inconvenience. Our observation is that, for a dispatching

policy to be effective, a portion of the fleet capacity should be reserved to the top-priority customers. The

goal is to avoid that, upon the arrival of a class 1 request, all the vehicles are already traveling to service spot

requests that: (i) could potentially be far to reach (recall that a vehicle cannot be diverted while en-route);

(ii) could indeed be delayed without determining high penalties. Thus, moving on from this idea we develop

the two policies described in the following.

3.1 Adaptive capacity-reserve policy

In this policy, a fraction αc of the fleet of m vehicles is reserved to service the requests belonging to class

1, . . . , c (with c = 1, . . . , C). Thus, αc denotes the fraction of the fleet that can be used to service the requests

belonging to class c and to the more prioritized classes. In this way, when taking the dispatching decision

we employ a cheapest-insertion approach, but the number of alternatives is limited by the fact that not all

the vehicles can service all the requests. As an additional dispatching rule, when evaluating the different

alternatives we allow an insertion if the delivery instants of the requests of each class c (c = 1, . . . , C) that
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are already allocated on a route are not delayed more than a given value εc ≥ 0. As pointed out before,

we also want to get advantage of the available stochastic knowledge of the problem. As a consequence, the

values of the vector α = (α1, . . . , αC) are determined by solving off-line a training problem on a sample that

is representative of the instances to be solved. Of course, the solution must be such that
∑C
i=1 αi = 1. The

training procedure starts with a given value for α. Then, we try to repeatedly modify each component αc

by adding or subtracting a value δ and evaluating the (possible) objective function improvement. In case of

an improvement, the value of αc is updated and the procedure is iterated. The procedure terminates when

no further improvements are possible.

Under certain circumstances, it could be beneficial to relax the capacity-restriction constraint (i.e., a

request of class c can be serviced by a vehicle reserved for one of the classes 1, . . . , c − 1). In particular, let

∆R
k be the increase in the objective function caused by the insertion of request k using the capacity-reserve

policy, and ∆k be the increase in the objective function when the capacity-restriction constraint is relaxed.

Then, for a given value of a parameter β > 1, if ∆R
k > β∆k then the request is allocated without considering

the capacity-restriction constraint. The aim of β is to allow such an insertion only if the value of ∆R
k is

considerably greater than ∆k (e.g., in our experiments we test various values for β, ranging from 1.5 to 5).

3.2 Adaptive capacity-reserve policy with relocation

An important aspect to deal with when trying to anticipate future demand is the relocation of idle

vehicles. In this policy, we combine the characteristics of the previous adaptive capacity-reserve policy with

a strategy to reposition idle vehicles to a number of home positions. The resulting policy is termed adaptive

capacity-reserve policy with relocation. In particular, let r be the number of idle vehicles among those that

are devoted to servicing requests belonging to the top V classes, where V is a parameter to be tuned. The

home locations where such vehicles are repositioned are determined by solving an r-median problem ([1]).

The solution approach we employ is taken from [2], in which r points are first chosen at random to form an

initial solution. Then, the algorithm checks whether a new point could replace one of the points in order to

produce a new solution with a better objective function value. If so, the substitution is performed and the

current solution is updated. The algorithm stops when substitutions do not lead to improving solutions.

The optimal assignment of idle vehicles to the home locations is determined considering the distances

between the current positions of the vehicles and the home locations as assignment costs. More precisely, let

I be the set of current positions of idle vehicles and J the set of home locations (|I| = |J | = r). The allocation

problem is modeled as a linear assignment problem ([1]): {Minimize
∑
i∈I

∑
j∈J dijxij :

∑
j∈J xij = 1, i ∈

I;
∑
i∈I xij = 1, j ∈ J ; xij = {0, 1}, i ∈ I, j ∈ J}. Here, xij is 1 if and only if idle vehicle i ∈ I is assigned

to home location j ∈ J . This problem can be solved in polynomial time with several assignment algorithms.

To speed up the execution, the r possible home locations are computed off-line for each r = 1, . . . ,m

and the allocation is solved greedily. The candidate points among which to choose the home locations are

obtained by sampling the probability distributions of the requests of the top V classes. On the other hand,

the assignment is solved in real time, given that it depends on the current positions of the idle vehicles.

4. Computational experiments

To test our policies, we compare them with two policies: a reactive policy that allocates each new request

by using a cheapest-insertion approach and neglecting all the available stochastic information; the anticipatory

policy described in [3]. Our goal is to show that our policy can match the quality of a complex anticipatory

algorithm, with a computational effort that is comparable to that of a reactive procedure. Moreover, we want

to demonstrate that our policies are scalable, i.e., they are able to handle instances of growing size. Thus,

we perform a number of computational experiments on randomly generated instances of varying size. All the
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Table 1: Results for N1 = 40 and N2 = 160
Dataset

m
RES RES REL ANT

(l1, l2, ε1, ε2) α∗ β∗ DEV Ts α∗ β∗ DEV Ts DEV Ts

(0, 0, 0, 0)

20 (0.20, 0.80) 1.5 −0.48% 0.01 (0.30, 0.70) 3.5 −0.26% 0.01 4.92% 29.36

40 (0.20, 0.80) 3.5 −1.09% 0.01 (0.50, 0.50) 4.0 −7.53% 0.01 −4.43% 76.97

60 (0.20, 0.80) 3.5 −1.12% 0.01 (0.70, 0.30) 1.5 −9.12% 0.04 −4.84% 144.21

(15, 15, 0, 0)

20 (0.20, 0.80) 1.5 −1.00% 0.01 (0.10, 0.90) 4.0 2.74% 0.01 10.24% 28.14

40 (0.20, 0.80) 3.5 −2.54% 0.01 (0.80, 0.20) 1.5 −14.02% 0.04 −8.03% 71.18

60 (0.20, 0.80) 3.5 −2.58% 0.01 (0.50, 0.50) 2.5 −15.98% 0.03 −10.57% 134.68

(15, 15, 15, 15)

20 (0.20, 0.80) 1.5 −1.35% 0.01 (0.10, 0.90) 4.0 2.60% 0.01 13.32% 24.45

40 (0.20, 0.80) 1.5 −1.78% 0.01 (0.70, 0.30) 2.0 −13.86% 0.03 −7.36% 70.41

60 (0.20, 0.80) 1.5 −1.80% 0.01 (0.50, 0.50) 3.0 −15.37% 0.04 −7.91% 133.42

(15, 15, 0, 15)

20 (0.20, 0.80) 1.5 −1.32% 0.01 (0.10, 0.90) 4.0 2.78% 0.01 13.74% 30.74

40 (0.20, 0.80) 1.5 −1.63% 0.01 (0.70, 0.30) 2.0 −13.85% 0.03 −6.87% 72.66

60 (0.20, 0.80) 1.5 −1.65% 0.01 (0.50, 0.50) 3.0 −15.36% 0.01 −7.56% 132.14

datasets are characterized by several experimental factors, some of which have the same value across all the

datasets, whereas the others have different values. In particular, in the former set of experimental factors we

consider: C = 2, a planning horizon of 480 minutes, an average speed of the vehicles of 40 km/h, h = 20 km,

w = 20, V = 1, p1 = 10 and p2 = 1. The remaining experimental factors are:

– expected number of requests per class Nc (c = 1, . . . , C): we have tested various values for N1 and N2,

such that N1 is equal to the 20% of the overall expected number of requests and N1 + N2 is equal to

200, 500, and 1500;

– number m of vehicles: we have considered various values that depend on the instance size;

– parameters lc and εc (c = 1, . . . , C): we have tested various combinations, obtaining four datasets.

The performance of our dispatching policies are assessed by using two indicators. First, we consider the

average time Ts (in seconds) needed by the procedure to allocate a single request. We highlight that, to allow

a particular heuristic to be useful in the real world, the value of Ts must be lower than the inter-arrival time

between two consecutive requests. Second, we compute the average percentage objective function deviation

of the anticipatory algorithm (ANT, in the following) and of our two policies (RES for the adaptive capacity-

reserve policy, and RES REL for the adaptive capacity-reserve policy with relocation, in the following) with

respect to the reactive procedure. These deviations (reported under the column heading DEV in the tables)

are obtained as 100(objH − objR)/objR, where objR represents the objective function value of the reactive

procedure, whereas objH is the objective function value of the heuristic we want to evaluate. Thus, a negative

value indicates that the considered heuristic achieves an improvement over the reactive procedure. For all the

datasets, we have first determined the best values for α by employing the procedure illustrated in Section 3.1

with δ = 0.1. Such values are reported in the tables under the column α∗. Analogously we have determined

the best values for β (β∗ in the tables) in the set {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}. For each dataset, the

results are averaged over 30 instances.

The results contained in Table 1 show that the RES and RES REL policies obtain a maximum improve-

ment of about 2.5% and 16%, respectively, whereas the maximum improvement of the anticipatory procedure

is about 10.5%. On the other hand, we observe that our policies are extremely fast, with an average time

to allocate a single request that ranges between 0.01 and 0.04 seconds. As expected, the ANT procedure is

much slower, taking up to 144 seconds to take a dispatching decision. This is a border-line result with respect

to the requirement that the value of Ts must be lower than the inter-arrival time between two consecutive

requests (about 144 seconds in this case). Tables 2 and 3 contain the results for the case with an expected

overall number of requests equal to 500 and 1500, respectively. For these tables, we report only the results

for our policies, because the ANT procedure has always obtained a value for Ts consistently higher than the
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Table 2: Results for N1 = 100 and N2 = 400
Dataset

m
RES RES REL

(l1, l2, ε1, ε2) α∗ β∗ DEV Ts α∗ β∗ DEV Ts

(0, 0, 0, 0)

60 (0.20, 0.80) 3.5 −1.17% 0.01 (0.50, 0.50) 3.0 −4.76% 0.02

80 (0.20, 0.80) 3.5 −1.20% 0.01 (0.40, 0.60) 2.5 −6.24% 0.03

100 (0.10, 0.90) 3.5 −1.21% 0.01 (0.60, 0.40) 2.5 −8.41% 0.11

(15, 15, 0, 0)

60 (0.10, 0.90) 5.0 −3.19% 0.01 (0.50, 0.50) 4.5 −5.19% 0.04

80 (0.10, 0.90) 5.0 −2.75% 0.01 (0.50, 0.50) 2.0 −7.66% 0.09

100 (0.20, 0.80) 5.0 −2.72% 0.01 (0.70, 0.30) 2.0 −12.52% 0.35

(15, 15, 15, 15)

60 (0.20, 0.80) 5.0 −2.12% 0.01 (0.70, 0.30) 1.5 −3.80% 0.12

80 (0.10, 0.90) 5.0 −2.17% 0.01 (0.50, 0.50) 4.5 −6.73% 0.10

100 (0.10, 0.90) 5.0 −2.17% 0.01 (0.60, 0.40) 3.0 −11.35% 0.20

(15, 15, 0, 15)

60 (0.20, 0.80) 5.0 −1.96% 0.01 (0.70, 0.30) 1.5 −4.71% 0.11

80 (0.10, 0.90) 5.0 −2.05% 0.01 (0.50, 0.50) 2.0 −6.57% 0.10

100 (0.10, 0.90) 5.0 −1.97% 0.01 (0.60, 0.40) 3.0 −11.39% 0.18

Table 3: Results for N1 = 300 and N2 = 1200
Dataset

m
RES RES REL

(l1, l2, ε1, ε2) α∗ β∗ DEV Ts α∗ β∗ DEV Ts

(0, 0, 0, 0)

180 (0.20, 0.80) 2.0 −1.36% 0.02 (0.50, 0.50) 3.5 −4.36% 1.73

220 (0.10, 0.90) 2.5 −1.37% 0.02 (0.50, 0.50) 4.5 −5.56% 2.51

260 (0.20, 0.80) 2.0 −1.36% 0.02 (0.70, 0.30) 1.5 −6.12% 4.96

(15, 15, 0, 0)

180 (0.20, 0.80) 4.5 −3.30% 0.02 (0.70, 0.30) 3.0 −2.46% 2.02

220 (0.10, 0.90) 3.0 −3.31% 0.03 (0.60, 0.40) 4.5 −4.84% 2.11

260 (0.10, 0.90) 4.5 −3.30% 0.02 (0.80, 0.20) 3.0 −7.65% 5.64

(15, 15, 15, 15)

180 (0.10, 0.90) 5.0 −2.03% 0.02 (0.70, 0.30) 3.0 −0.18% 3.23

220 (0.20, 0.80) 2.0 −2.03% 0.03 (0.60, 0.40) 4.0 −1.40% 6.53

260 (0.10, 0.90) 2.0 −2.03% 0.02 (0.80, 0.20) 4.0 −3.60% 16.53

(15, 15, 0, 15)

180 (0.10, 0.90) 3.0 −1.75% 0.03 (0.70, 0.30) 3.0 0.86% 2.72

220 (0.20, 0.80) 3.0 −1.74% 0.03 (0.60, 0.40) 4.0 −1.84% 2.99

260 (0.10, 0.90) 3.0 −1.74% 0.03 (0.90, 0.10) 1.5 −3.74% 9.39

inter-arrival time between two consecutive requests (about 57 seconds for 500 requests, and about 20 seconds

for 1500 requests). The results of these tables show that our policies are consistently better than the reactive

procedure, with maximum improvements of about 3% and 12.5% when the overall expected number of daily

requests is 500, and about 3% and 8% in the case of 1500 requests. With respect to the computing times,

their values are a little bit higher, especially for RES REL, but still lower than the inter-arrival times.
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1 Introduction
Everyone hates waiting for the cable guy. In fact, people dislike “waiting for the cable guy”

so much that it has spawned its own meme with over two million Google search results.

More generally, customers dislike the wide time windows (TWs), the earliest and latest

times at which a service will begin, that service providers and home-attended delivery

companies provide customers. While customers are willing to tolerate some amount of wait

(Zeithaml et al., 1993), these wide TWs are frustrating for customers who often must take

at least a part of a day off work to stay at home and wait for the technician (Ragsdale,

2012). For example, one of the co-authors was recently told that the technician flipping

the switch for internet service would arrive between 8am and 2pm. While these wide TWs

offer home service companies better scheduling and routing flexibility, one study estimated

that the economic loss resulting from people waiting for service amounted to $38 billion in

2011 in the United States alone (Ellis, 2011).

Ideally, companies would offer narrower TWs. However, shrinking TWs is challenging

for several reasons. First, travel and service times are uncertain when the time windows are

communicated. Perhaps more importantly, TWs must often be communicated at the time

that the customer makes the service request, before all of the requests that will be served

on that day are known. The integration of new customers into the planned tours shifts the

arrival times of already assigned customers. Hence, dispatchers need to anticipate future

requests in the determination of suitable arrival times.

In this work, we seek to improve the customer experience by improving the width of the
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TWs that are offered without sacrificing reliability. The key to the problem is to estimate

a state-dependent arrival time of a technician at the time of the service request when we

do not know all of the requests that the technician will be asked to serve on that day. We

call the problem the time window assignment problem with dynamic requests (TWAP).

Over the course of the day, customers request service for some future day. We call this the

capture phase. The execution of the route takes place during a future execution phase.

For the purposes of this study, we assume that the day and the driver to which the

request is allocated are determined exogeneously. With the day and driver chosen, the

decision maker must communicate to each requesting customer a time window in which the

technician will arrive to begin the service. We assume that the requests as well as the travel

and service times are stochastic. The firm follows a given routing strategy. To facilitate

the use of multiple time-window widths, the objective of the problem is to minimize the

absolute difference between the actual arrival time and the communicated arrival time.

The optimal solution for the TWAP minimizes the expected absolute deviation is to

determine the median arrival time for each individual. We demonstrate that estimates of

the median are unstable and instead focus on estimating mean arrival times. To estimate

the expected arrival time of a technician at a customer, we make use of techniques familiar

in approximate dynamic programming. First, we use the concept of a state to describe

the status of the system at the time of each request. In this way, we can make each

arrival time estimate state-dependent. Because of the large number of potential states, we

aggregate the state space based on important temporal parameters. This aggregation is

motivated by the success of temporally-based aggregation schemes in the dynamic routing

literature. With the aggregated state space, we then execute a series of offline simulations

that allow us to learn the expected arrival times for a state. To achieve a balance between

simulation runs and solution quality, we rely on a dynamic aggregation of the state space.

By performing the computation offline, the proposed method is particularly amenable to

the need to real-time communication with requesting customers.

This work makes several important contributions to the literature. First, we introduce

a new model and method valid for a number of applications related to completion time

estimation in both dynamic routing and scheduling. Second, we introduce a temporal-

aggregation scheme for the state space. This aggregation allows us to develop high-quality

state-dependent estimates of the arrival times for a given request and thus provide high

quality state-dependent TWs. Given the challenges associated with estimating the median

of the arrival-time distributions in the case of a large state space, we instead estimate mean

arrival times and show that our estimates of the mean lead to superior TWs. We present

an offline approach for developing these estimates, giving us the ability to communicate

TWs in real time. An extensive computational study demonstrates that the proposed

method significantly outperforms the benchmarks.



The work presented in this talk is the only work that considers uncertainty in requests,

travel times, and service times in providing state-dependent arrival time estimates for

routing problems. Further, the method presented in this work can be extended to scheduling

applications in which release or leadtime estimates are required. For both routing and

related scheduling problems, this work is the only work that presents an offline estimation

approach offering the opportunity to provide customers with real-time estimates.

2 Solution Approach
Because of the spatial and temporal interaction between requests, an analytical approach

is not possible, and we turn to approximation. We propose an approach in which we

use simulation to derive estimates for values of aggregated states. This method can be

viewed as non-parametric as the mapping from the state to the value need not take any

particular functional form and is state dependent. Our choice of a non-parametric approach

is based on the results reported by state-of-the-art methods in the dynamic vehicle routing

literature, all of which use non-parametric approaches to estimate the value of post-decision

states (the cost-to-go) and the fact that a dynamic vehicle routing problem drives our

estimates.

Ideally, we would approximate median arrival times for every state. However, as the

state space is essentially infinite, we could not possibly store, let alone, calculate values for

each state. Thus, we operate on an aggregated state space. Our solution approach makes

two additional assumptions. First, a complication in solving the TWAP arises in trying

to approximate medians. Empirical estimations of median values often exhibit significant

instability when only a few observations are available. The obvious solution is to increase

the number of simulation runs to increase the number of samples per state. With millions

of aggregated states, however, even an offline approach coupled with efficient methods for

computing running medians or methods that do not require storing all observed values

are computationally intractable. Interestingly, our results show that the approximation

of mean values does not suffer as greatly from the challenges of small sample sizes, and

fortunately, median and mean values are often similar, differing significantly only for skewed

distribution with long tails. Second, because we are estimating means rather than medians,

we base our approximations on mean deterministic travel and service times. The mean

value is invariant to random service and travel times. We call our approach the anticipatory

time window assignment approach (ATW).

3 Results
Table 1 presents results comparing the proposed approach to a myopic estimate of arrival

time and to an approach from the literature called linear. For the ATW, the linear, and

the myopic approaches, the rows of the table represent the average difference from the

estimated arrival time, the maximum difference, the percentage of customers served within

a 30-minute TW, the percentage of customers served within a 60-minute TW, and the



Table 1: Solution Quality

Measure ATW linear myopic

Q 19.1 26.3 81.0
Qmax 74.1 105.0 261.5
Q30

TW 58.8 48.5 17.9
Q60

TW 80.3 70.5 32.7
Q120

TW 94.6 88.9 53.6

percentage of customers served within a 120-minute TW, respectively. On average, for the

solution returned by the ATW, the estimated arrival time and the realized arrival times

differ by 19.1 minutes. The average difference for linear is less than a half an hour, and for

myopic, it exceeds 80 minutes. The results for the myopic approach demonstrate the value

of anticipating future requests when estimating arrival times. The maximum difference

for ATW is 74.1, more than 30 minutes less than linear. Looking at the percentage of

customers served within a TW, we can see that 58.8% of the customers are served within a

30-minute TW centered at the estimated arrival time given by the ATW method. Further,

for one- and two-hour TWs common in many practical applications, the ATW meets on

average 80.3% and 94.6% customers within the TWs, respectively. Neither the linear nor

myopic approaches are capable of such performance. However, the linear approach does

close the gap as the TW widens. This result suggests that the simple linear approach may

be amenable in cases in which a provider offers wide TWs.

Examining a disaggregation of the results, we observe a general pattern. The differences

between the estimated arrival time and actual arrival times increases with the expected

number of customers and the service time. An increase in expected number of customers

and service time also leads to higher differences. In the worst case, the difference reaches

half an hour for ATW and two hours for the myopic approach.

The development can be explained by the individual impact of both the service time and

the number of customers. The greater the number of potential customers on a route, the

more likely a customer is to be shifted in the route from when the customer’s arrival time

was first estimated to when the route is executed. That is, for a given customer request, the

arrival time distribution is more variable as more customer requests are expected. Further,

if the service time is high, every newly assigned customer results in a significant shift of

subsequent existing customers in the tour. Again, the range in the arrival time distribution

is high, making accurate prediction more difficult. Still, ATW is able to anticipate the

shifts induced by the new customer requests, particularly, for a high number of requests

and lower service times. For low service times, the average difference does not exceed

18.4 minutes, while for the highest service time, the difference is always higher than 26.8

minutes. This result suggests that applications with lower service times, such as home
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Figure 1: Divergence from Estimated and Realized Arrival Times

attended delivery, may be more more suited for narrow TWs compared to applications

with high service times such as complex repair-services.

The point of time at which a customer requests service also affects the accruacy of

the arrival time prediction. For a particular instance setting, Figure 1 depicts the average

difference of the realized arrival times from the estimated arrival times with respect to the

point of time in the capture phase at which the request occurs. On the x-axis, we plot

time. On the y-axis, we plot the positive differences from the estimate arrival times and

the negative divergences. Figure 1 exhibits decreasing values for positive and negative

differences over time. Early requests experience a greater difference between the estimated

and realized arrival time. Customers requesting service early in the horizon of the capture

phase encounter a tour that is not yet established and to which many requests are still to be

assigned. Over time, the tour becomes more established and there are fewer opportunities

for customers to be inserted. .
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Dynamic Pickup and Delivery Problems with Transfers

Afonso Sampaio, Luuk Veelenturf, Tom Van Woensel
Eindhoven University of Technology

Martin Savelsbergh
Georgia Institute of Technology

1 Introduction

In on-demand transportation systems, a decision-maker has to decide on actions using little
or no knowledge of future requests and, as importantly, these decisions have to be made
quickly. This prospective study aims to provide new insights on addressing such problems.
In particular, we consider pickup and delivery systems in which each transportation re-
quest is associated with an origin, destination and specific time windows for service. In the
literature this problem gets much attention and is referred as the Dynamic Pickup and De-
livery Problem. However, we include transfer opportunities to facilitate constructing and
maintaining more cost-effective and robust transportation plans. Transfer points are loca-
tions in the network where requests can be transferred between vehicles and temporarily
stored. Hence, more than one vehicle (type) can be used to serve a request, e.g., a request
may be picked up at its origin by one vehicle, then dropped off at a transfer point where
another vehicle (with other characteristics) will pick it up and drop it off at its destination.
The introduction of transfer opportunities allows serving more requests with a given set of
vehicles and/or serving a given set of requests with fewer vehicles. An illustration of the
benefits of transfer points can be found in Figure 1. As transfers require time synchro-
nization, developing decision technology that effectively exploits transfer opportunities is
challenging, more so in a dynamic setting where future requests need to be anticipated and
the time to make decisions is limited.

The presence of transfer locations within transportation networks is not new and is
encountered, for example, in less-than-truckload transportation, where freight is transferred
at breakbulk terminals to increase utilization. In the context of City Logistics, however,
transfers have received less attention, albeit they will have to play a more prominent role
in the future in order to handle vehicle type and time access restrictions in urban areas, for
example. Transfers allow freight delivery by a mixed fleet of vehicles (truck, van, tricycle),
but also allow integration of freight and passenger transport. Transfers may also overcome
challenges related to driver availability arising in the context of crowdshipping. Consider,
for example, a situation in which an individual is able (and willing) to perform a pickup,
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Figure 1: A set of three requests, (i+, i−)i=1,2,3, served by two vehicles. Transfers (T ) allow
more balanced routes and avoid long travel distances (e.g., going from 3+ to 3−).

as it is on the way to work, but unable to do the delivery, as it is out of the way and would
take too much time. The ability to transfer may allow another individual to complete the
delivery. Coordinating such multi-leg deliveries, in real-time, is challenging, and developing
the technology to do so effectively is one goal of the research.

2 Literature

The static Pickup and Delivery Problem (PDP) and its variants have given rise to a sub-
stantial amount of research. Only recently, the possibility of allowing transfers of goods (or
people) is addressed in the literature. In [7], the authors evaluate the usefulness of trans-
fers motivated by the operations of a large courier company. They propose a two-phase
heuristic where an insertion procedure is used to construct a solution and an improvement
method is applied to the best solution found. A first mathematical formulation and a
branch-and-cut approach were proposed in [2], but only small instances could be solved.
Motivated by an air cargo carrier application, [9] introduced an insertion heuristic to iden-
tify profitable circumstances to exploit the transshipment option. The authors developed a
GRASP algorithm and proposed a set of randomly generated instances. More recently, [10]
proposed a new model for the problem, distinguishing between vehicle (routes) and request
flows and using multi-commodity flows to match these two. [5] proposed an adaptive large
neighbourhood (ALNS) algorithm for the problem, and tackled the Dial-a-Ride Problem
(DARP) with transfers in [6]. A similar problem was proposed in [3], where requests are
allowed to be transferred to/from scheduled lines such as bus, train and metro, operating
between two terminals. In a recent survey [4], pickup and delivery problems with transfers
are cited as one of the extensions of the PDP with cross-docking.

Recently, dynamic vehicle routing problems have been receiving a great deal of attention
from the community [8]. To the best of our knowledge, only [1] tackled a dynamic PDP
with transfers. The authors consider transfers occurring at predetermined (e.g., depots)
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or arbitrary locations, provided that both vehicles are close enough to each other at some
point in time. To satisfy a request, they propose solving a shortest path problem in a
special graph and show that this graph does not exhibit the principle of optimality. Thus,
instead of applying classical shortest path algorithms (e.g., Bellman-Ford, Dijkstra), the
authors introduce a label-setting algorithm to speed up the enumeration of all paths from
the pickup to the delivery location of the request. The proposed method does not consider
reassignment of requests (i.e., removing a request from one route and insert into another)
and, since a request is only accepted if there exists a route sufficiently close to the pickup
location, this might lead to many requests being refused. Moreover, no insight is given on
the gains that the transfer opportunities yield.

3 d-PDP-T: Formalization

Let R be the set of transportation requests. A request r ∈ R specifies a demand dr ∈ N+

to be collected at location r+ after time e+r and to be delivered at location r− before time
l−r . A vehicle fleet K is used to serve the requests. Each vehicle k ∈ K has capacity Qveh

k ,
is initially positioned at depot sk ∈ S, and is available for service between evehk and lvehk .
Furthermore, at each depot s ∈ S an extra vehicle with capacity Q+ can be brought into
service at any time for a fixed cost of c+, and it will be available for a maximum duration
of L time units.

We consider a set H of transfer locations where requests can be transferred from one
vehicle to another. A transfer operation (i.e. a vehicle visits a transfer location) has a fixed
service fee of ctr and each transfer location h ∈ H has a fixed capacity Qtr

h to temporary
store items. Let N = S ∪ R+ ∪ R− ∪ H, where R+ = {r+|r ∈ R} is the set of pickup
locations and R− = {r−|r ∈ R} the set of delivery locations. Without loss of generality, we
assume that the intersections of any combination of S, R+, R− and H is empty. Define a
network G(N ,A), with arc set A representing links connecting locations. For all (i, j) ∈ A,
let ci,j be the cost and τi,j the travel time (including service time) of traversing arc (i, j).
Waiting at a location is possible

Customers call in for transportation requests during the working day, i.e., during the
time interval [0, T ]. At time 0, let R0 be the requests already known to the system before
operation starts. At any time t ∈ [0, T ] a customer can call-in for service and the locations,
demand and time restrictions of the new request are then revealed. Let tr be the call-in
time of request r and Rt the requests known to the system at time t. The routing plan
should be modified to include the new request. The assignment of requests to vehicles
and the order that locations are visited can be modified, as well as new vehicles may be
dispatched from their initial locations. Once a vehicle is instructed to visit the next location
of its route, this location must be visited immediately, i.e., deviation is not allowed. The
goal is to minimize the transportation costs.
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4 Methodology

At the moment of writing, the methodology has focused on the static variant of the problem
(i.e. all request are known at time 0). It is expected that we learn from the methodology
to solve the static problem and gain insights to apply in the dynamic variant.

An adaptive large neighborhood search heuristic is introduced consisting of two parts:
the generation of initial feasible solutions and improvement strategies. Especially the
improvement strategies are valuable for the dynamic setting, as in this case there will be
a current routing plan to which in each stage one or more new requests need to be added.

4.1 Options for initial feasible solutions

A routing plan in which no transfers are used is clearly a solution to the problem. However,
defining neighborhoods that can exploit the introduction of transfers is quite challenging as
it has to involve rerouting of at least two vehicles (to visit a transfer location). Therefore,
it might be beneficial to create an initial feasible solution in which some of the requests
are transferred. From there, in the improvement phase, other requests could also make use
of these transfer opportunities, if doing so leads to a better solution. To identify requests
that seem good candidates to be transferred, we introduce the following notion of regions.

We first divide the whole area underlying the transportation network in regions. Vehi-
cles need to stay within their region and if the pickup and delivery of one request are not
in the same region, transfers are required. For each of these requests, we find the shortest
path via the transfer points and split the path in requests per region with appropriate time
windows. For example, if the path traverses two regions via transfer point h, the request
r is split up into a request from r+ to h and a request from h to r−. In the first region the
deadline l−h for reaching h must be set such that it is lower or equal than the time e+h it
becomes available in region 2. Afterwards, each region is solved as a standard pickup and
delivery problem.

4.2 Improvement strategies

One of the important operators for the ALNS is the insertion operator. This one is also of
special interest for the dynamic setting of the problem as new requests pop up all the time.
We can differentiate between insertions of transfer points into request routes (interesting
for the first mentioned initial solution) or the insertion of requests into vehicle routes.
In both cases one insertion can change multiple vehicle routes at the same time which is
different from the standard insertions in the Pickup and Delivery literature.

5 Current stage of the research

At the moment we have only results for so-called ”toy-problems”, in which we investigated
situations where it is worthwhile to include transfers and situations where it is not. How-
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ever, the framework of our methodology is ready and at the TSL conference we will be able
to present results of the static and dynamic variant of this problem. We will also present
the interesting methodological challenges we have faced by introducing transfers. It is not
obvious to come up with valuable starting solutions (e.g. in the regions variant, defining
the regions is already interesting), insertion methods (e.g. while inserting a new request or
transfer in a route the time synchronization of vehicles at transfer location is a challenging
problem in itself) and objective functions for the dynamic case (i.e. optimizing the system
at each stage will not automatically lead to minimum operational cost).
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Abstract 

The most complicated level of coordinated transportation services is ride-sharing with synchronized transfers. In 

general, transfers are used to provide more efficient transportation networks by reducing the operational costs, as well 

as making more flexible routes available for the customers. A large number of our daily trips is classified in this 

category. For instance, in multi-modal transports, we use two or more transport modes for our trips (e.g. train and 

bus). Multi-modal transit provides convenient and economical connection of various modes to make complete journey 

from origin to destination. Another example of this type of transportation service can be found in the first mile/last 

mile transport of the commuters who need to go from origin to a transit station and then from the station at the other 

end of the trip to a final destination. Ride-sharing between households or fellow workers is another example of ride-

sharing with synchronized transfers. In this case, members of a family or any other social group informally arrange 

their trips and share the travel information such as departure time, stops, and transfer points among themselves. 

In general, ride-hailing and ride-sharing with/without transfers can be mathematically modeled by the vehicle 

routing problem with pickup and delivery with time windows (VRPPDTW). The vehicle routing problem with pickup 

and delivery with time windows (VRPPDTW) is a combinatorial optimization problem that searches for an optimal 

set of routes for a fleet of vehicles to serve a set of transportation requests. Each request is a combination of pickup at 

the origin and drop-off at the destination within particular time windows.  

Although several algorithms have been proposed to solve the VRPPDTW, this problem even for single vehicle 

cases is still classified as one of the toughest problems of combinatorial optimization. Generally, in the most commonly 

used exact approaches for solving the VRPPDTW, column generation and branch-and-cut, generating additional 

columns and cuts for real-world transportation networks is a computationally-challenging task. Moreover, dealing 

with several constraints especially non-linear constraints related to the validity of the time and load variables in the 

classical VRPPDTW model, prompted us to look at this challenging problem from a different angle. 

In this research, we intend to embed the VRPPDTW constraints, i.e. passengers’ preferred departure/arrival time 

windows and vehicles’ capacity constraints, on a three-dimensional state-space-time network in which time and load 

are explicitly added as new dimensions to the physical transportation network. We will further show that our time-

expanded network structure in comparison to the classical network representation performs better in terms of (𝑖) 

handling passengers’ desired pickup and drop-off time windows and (𝑖𝑖) fulfilling the demands with less number of 

vehicles. We will also show that our multi-dimensional network structure not only handles large-scale transportation 

networks with links whose routing cost (travel time) may vary over the time of day (based on the real-time traffic 

conditions), but also performs on the networks in which routing cost of the links is load dependent (e.g. HOV or HOT 

lanes).  

In addition, the distinctive structure of our proposed multi-dimensional network allows us to mathematically 

model different forms of coordinated transportation services. In fact, introducing passengers’ cumulative service state 

as an independent dimension to the space-time network enables us to distinguish the ways by which a passenger can 

be served (i.e. ride-hailing, ride-sharing without transfer, or ride-sharing with synchronized transfers). We will further 

apply a Lagrangian Relaxation (LR) framework to determine the price of each trip request considering the way by 

which it is supposed to be fulfilled (e.g. through Lagrangian multipliers). 

Note that our proposed multi-vehicle passengers’ cumulative service state-space-time network representation is 

able to solve the VRPPDTW to optimality for a limited number of passengers due to the exponential order of 

passengers’ cumulative service state; therefore, in order to handle a real-world transportation network with a large set 



of customers, we must split the large-sized primary VRPPDTW into a number of small-sized sub-problems in which 

trips with the most compatibility are clustered together. In order to find well-matched customers, we utilize the three-

dimensional space (XY plane)-time network representation and apply a rational rule to explore all potential matchings. 

To define passengers’ cumulative service patterns within each cluster, we utilize the path representation schema for 

the Traveling Salesman Problem (TSP) proposed by Bellman (1962) and Held and Karp (1962). We further relax the 

group of constraints by which we guarantee that each passenger is served by a single way (i.e. ride-hailing, ride-

sharing without transfer, or ride-sharing with synchronized transfers). As a result, the problem is converted to a state-

dependent time-dependent least cost path problem which can be solved by various algorithms already proposed for 

solving the shortest path problem efficiently. Here, we develop a forward dynamic programming (DP) solution-based 

approach across multiple vehicles to reach the optimality within the cluster. 

As a final point, by introducing passengers’ cumulative service patterns in the VRPPDTW, we are able to tackle 

the symmetry issue which is a common issue in the combinatorial problems. To explain this issue, suppose vehicles 

𝑢 and 𝑢′ are identical in terms of starting and ending depots, work shift, and capacity. Despite the fact that from the 

practical point of view, it does not matter passenger 𝑗 is served by vehicle 𝑢 or 𝑢′, the computational procedure spends 

plenty of time exploring the vertexes of these two vehicles’ network separately. As a result, many regions which are 

symmetric to the parts that have been already examined are scanned. One of the common and effective methods of 

handling symmetries is to introduce symmetry breaking constraints to the main problem to impose the system, not to 

search within symmetric solutions (Raviv, Tzur, and Forma 2013). In this paper, by the aid of our passengers’ 

cumulative service patterns, we are able to impose the symmetry breaking constraints implicitly to assignment-routing 

paths in a well-structured state-space-time network. To sum up, our major contributions in this research are as follows: 

1. Providing a mathematical framework for pickup and delivery problem with two types of synchronization: tasks 

and transfers. 

2. Embedding the vehicle-to-task assignment constraints by a DP solution algorithm on a state-space-time network. 

This provides an exact solution for small scale problem and overcomes the infeasibility, as well as symmetry 

issue in the lower bound estimator.   

3. Handling large-scale instances by the aid of a Lagrangian heuristic to evaluate the price of synchronized transfers 

and guide a fast search. 

4. Testing large scale real-world instances considering road capacity constraints to encourage synchronized transfers 

and reduce the number of vehicles and corresponding traffic congestion. 

 

Computational experiments  

The time-dependent DP described in this paper was coded in C++ platforms, and passengers’ grouping problems 

and vehicles’ performance improvement procedure were solved from GAMS Distribution 23.00. The experiments 

were performed on an Intel Workstation running two Xeon E5-2680 processors clocked at 2.80 GHz with 20 cores 

and 192GB RAM running Windows Server 2008 x64 Edition. In this section, we initially examine our proposed model 

on instances proposed by Ropke and Cordeau (2009) which is publicly available at http://www.diku.dk/~sropke/ 

followed by the randomly generated instances on the real-world City of Tempe transportation network to demonstrate 

the computational efficiency, as well as, solution optimality of our developed algorithm.  

Ropke and Cordeau (2009) data set is the modified version of instances employed by Ropke et al. (2007) initially 

introduced by Savelsbergh and Sol (1998). In this data set, passenger 𝑝’s origin and destination are denoted by node 

𝑝 and node 𝑛 + 𝑝, respectively. In addition, the coordinates (x and y) of passengers’ origin and destination are 

randomly generated and uniformly distributed over a [0,50] × [0,50] square. A single depot is located in [25,25]. The 

load of each passenger is randomly generated from [5, 𝐶𝑎𝑝𝑣], where 𝐶𝑎𝑝𝑣 is the maximum capacity of the vehicles 

(in these instances the vehicles’ capacity is assumed to be the same). Moreover, [0,1000] is considered as the vehicles’ 

time horizon (vehicles’ time horizon is assumed to be identical). Feasible departure/arrival time windows are also 

randomly generated for each passenger.  

Six groups of instances are examined by considering different values of vehicle’ capacity, different length of 

departure/arrival time windows, and different passengers’ load. The values of vehicles’ capacity in instances AA, 

http://www.diku.dk/~sropke/


BB, CC, and DD are 15, 20, 15, and 20; and the length of passengers’ departure/arrival time windows are 60, 60, 

120, and 120, respectively. In addition, as we mentioned before, in these four instances, the load of each passenger 

is randomly generated from [5, 𝐶𝑎𝑝𝑣]. In instances XX and YY, the value of vehicles’ capacity is 15, while the 

length of passengers’ departure/arrival time windows are 60 and 120, respectively. In addition, the load of each 

passenger is assumed to be 1. In instances XX and YY, due to the large value of vehicles’ capacity (i.e. 15) in 

comparison to the load of each passenger (i.e. 1), more levels of complexity are expected. To the best of our 

knowledge, very few papers have published the results of instances XX and YY. Our proposed model can handle 

these two instances though. Table 1 presents the results obtained from running our algorithm on Ropke and 

Cordeau (2009) instances. The two alphabetical letters in the instances names are representative of vehicles’ 

capacity, length of passengers’ time windows, and load of passengers, while the double-digit number after 

alphabetical letters demonstrates the total number of passengers in that data set. According to Table 1, in most 

instances, our heuristic-based algorithm in comparison to the heuristic proposed by Ropke et al. (2007) performs 

better in terms of number of vehicles (as the primary objective) and routing cost (as the secondary objective); 

however, from computation time perspective, it seems that the heuristic by Ropke et al. (2007) performs slightly 

better than ours. Figure 1 illustrates the position of passengers’ origin and destination and the routes of vehicles 

𝑣1-𝑣4 in data set AA30. The ratio of 
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒 ($/𝑚𝑖𝑛)

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ($/𝑚𝑖𝑙𝑒)
 is supposed to be 1. 

 
Fig. 1. Position of passengers’ origin and destination and route of vehicles 𝒗𝟏-𝒗𝟒 in data set AA30. 

 

Based on the real world City of Tempe transportation network illustrated in Figure 2 with 1160 transportation 

nodes and 2493 links, we test our algorithm on randomly generated transportation request instances in order to 

demonstrate the computational efficiency of our model. In this examination, the vehicles’ capacity is assumed to be 

3, the vehicles’ planning horizon is supposed to be [0,700], and the load of each passenger is assumed to be 1. The 

ratio of 
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒 ($/𝑚𝑖𝑛)

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ($/𝑚𝑖𝑙𝑒)
 is also assumed to be 1. Table 2 presents the results from City of Tempe. 

 

 

 

 

 

 

 

 

 

 



Table 1. Results obtained from running our algorithm on Ropke and Cordeau (2009) instances.  

Name 
# of 

groups 

# of 

Vehicles 

# of Vehicles (Ropke et 

al. (2007)) 

Routing 

cost 

UB of routing cost 

(Ropke et al. (2007))  

Computation 

time (sec) 

Computation time (sec) 

(Ropke et al. (2007)) 

AA30 5 4 5 41,316 51,317.40 25.6 27 

AA35 5 5 5 51,506 51,343.53 44.2 33 

AA40 6 6 6 61,759 61,609.44 44.67 41.4 

AA45 7 6 6 62,029 61,693.01 52.57 49.8 

AA50 8 6 7 62,213 71,932.03 54.25 58.8 

AA55 8 8 8 82,405 82,185.31 95.63 64.2 

AA60 9 8 9 82,629 92,366.70 94.44 76.8 

AA65 10 7 8 72,783 82,331.12 98.3 87.6 

AA70 10 8 11 82,950 112,458.28 143.7 98.4 

AA75 11 8 9 83,044 92,529.42 141.82 112.8 

        

BB30 5 4 5 41,267 51,193.62 28.4 28.2 

BB35 5 5 6 51,580 61,400.07 38.2 32.4 

BB40 6 5 5 51,785 51,421.35 60.83 44.4 

BB45 7 6 6 61,950 61,787.28 71.86 49.2 

BB50 8 7 7 72,164 71,889.75 89.5 58.8 

BB55 8 8 8 82,483 82,080.73 122.75 64.2 

BB60 9 11 10 112,988 102,323.77 122.22 73.8 

BB65 10 10 8 103,211 82,623.98 122.9 85.2 

BB70 10 11 9 113,534 92,647.75 160.4 100.8 

BB75 11 11 9 113,558 92,476.30 154.18 112.8 

        

CC30 5 5 5 51,358 51,145.18 44.2 28.2 

CC35 5 5 5 51,578 51,235.64 51.8 34.2 

CC40 6 5 6 51,695 61,473.91 49.5 43.2 

CC45 7 5 8 51,955 81,408.89 53.57 49.8 

CC50 8 7 6 72,154 61,936.27 51.38 63.6 

CC55 8 10 6 102,460 61,930.55 90.88 71.4 

CC60 9 8 7 82,546 72,104.00 84.89 82.8 

CC65 10 9 8 92,803 82,326.62 102.9 90 

CC70 10 9 9 92,963 92,613.68 149.3 102 

CC75 11 9 9 93,220 92,711.74 149 112.8 

        

DD30 5 4 6 41,426 61,040.10 41.4 27.6 

DD35 5 5 7 51,614 71,308.04 68.2 33.6 

DD40 6 5 6 51,851 61,531.68 68 43.2 

DD45 7 5 8 51,960 81,601.63 72.86 48 

DD50 8 6 7 62,131 71,761.23 70.25 60 

DD55 8 6 7 62,358 72,051.95 121.38 69 

DD60 9 7 8 72,521 82,308.08 113.78 78.6 

DD65 10 7 8 72,825 82,200.77 120.6 90 

DD70 10 8 8 83,034 82,631.56 173.6 102 

DD75 11 9 9 93,255 92,970.84 165.45 109.8 

        

XX30 5 4  41,093  101.4  

XX35 5 5  51,313  174.6  

XX40 6 5  51,540  166.33  

XX45 7 7  71,719  156.29  

XX50 8 6  61,707  126.88  

XX55 8 6  61,839  254.25  

XX60 9 6  62,033  299.44  

XX65 10 6  62,531  286.4  

XX70 10 7  72,775  400.1  

XX75 11 8  82,960  388.73  

        

YY30 5 4  41,195  76.2  

YY35 5 5  51,363  187.6  

YY40 6 6  61,608  161.33  

YY45 7 6  61,806  176.14  

YY50 8 6  61,966  203.88  

YY55 8 7  72,121  274.13  

YY60 9 6  62,321  276.56  

YY65 10 7  72,464  327.3  

YY70 10 7  72,586  419.6  

YY75 11 9   92,679   397.64   

 



 
Figure 2 City of Tempe with 1160 nodes and 2493 links. 

 

Table 2 Results from Tempe with 1160 nodes and 2493 links. 

Test case 
Number of 

passengers 

Number of 

groups 

Number of 

required vehicles 

Routing 

cost 

Computation 

time (s) 

1 50 8 9 92,053 279 

2 60 9 9 92,325 299 

3 100 15 15 154,144 443 

4 150 22 24 246,172 592 

5 200 29 29 298,013 943 

6 300 43 46 471,849 1233 

7 400 58 53 547,230 2043 

 

Conclusions 

In this research, by extending the work pioneered by Bellman (1962), Held and Karp (1962) and Psaraftis (1980) on 

using the DP method to solve TSP and VRP, we embed many complex VRPPDTW constraints on a three-dimensional 

state-space-time network. In this hyper network construct, elements of time and load are explicitly added as new 

dimensions to the physical transportation network. In order to handle a real world large-scale transportation network 

with a large set of customers, we must split the large-sized primary VRPPDTW into a number of small-sized sub-

problems in which passengers with the most compatibility are clustered together. We use a time-dependent forward 

DP algorithm to solve the time-dependent state-dependent least-cost assignment-path problem for the local clusters 

derived from the original VRPPDTW. In addition, in order to improve the vehicles’ performance, we apply a number 

of rational rules to perform several tasks by a small set of vehicles. At the end, extensive computational results over 

the standard data sets and randomly generated data sets from the Phoenix subarea (City of Tempe) show the 

computational efficiency and solution optimality of our developed algorithm.  
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1 Introduction

Many retailers offer same-day delivery (SDD) for customers who make online purchases and who demand

fast order fulfillment. To offer such a service, the retailer must operate a logistics system where delivery

request acceptance, order processing at a fulfillment location (depot), and delivery to the customer location

all occur within the same operating day. We formulate and study the Dynamic Dispatch Waves Problem

with Immediate Acceptance (DDWP-IA) to integrate request management and order distribution decision

making for SDD systems dispatching a single vehicle. Starting at time T > 0, customers place online order

requests to be delivered to their geographic location i∈ I within the node set I until a cut-off time tct ∈ (0,T ),

after which no more orders are accepted. Each order is not known until its disclosure time, but we assume

that all probabilities of the arrival process are available and that arrivals are Markovian and independent

between different locations. The DDWP-IA seeks to dynamically determine the set of requests to accept

and a vehicle operation (dispatch plan) to serve these orders before time 0. A dispatch plan is defined as

multiple delivery routes of a single vehicle dispatched from the depot at a subset of the finite set of feasible

dispatch times (waves) {tW = T, . . . , t1, t0}; the index w represents the number of waves to go before t0 = 0.

The objective is to minimize total vehicle travel cost, plus penalties for rejected delivery requests.

The previous work on the Dynamic Dispatch Waves Problem (DDWP) [2, 3] models the setting where

unattended requests are not formally rejected until the end of the day. This setting models a system where

all realized unserved orders are covered using a secondary transportation mode.

In the DDWP-IA we study an alternative setting with reduced flexibility in which customers are offered

SDD when placing an order, and if a customer selects the option then SDD is guaranteed. To do so, we use

an accept or reject framework: a request is accepted (and thus delivered in the same day), or rejected (with
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state s := (t,a,w)
cost C

dispatch to Q
or wait

accept or reject

update w

update a and/or C advance t
to next event

dispatch decision time t = tw?

new request to node i?

Figure 1: Flowchart of actions and transitions in state (t,a,w) for the DDWP-IA

a penalty) immediately when received. An order distribution system operates simultaneously with order

acceptance and dynamically chooses at each wave whether or not to dispatch the vehicle with a subset of

accepted orders ready for service; all accepted orders must be served by time 0. We also study the impact of

an order processing time p > 0 at the stocking location, which models the fact that accepted requests may

not be available for immediate dispatch, and instead must wait to be processed (picked and packed) before

they can be loaded into the vehicle. The DDWP-IA models a setting such as Amazon’s same-day delivery

service.

2 Contribution

We formulate the DDWP-IA as a semi-Markov decision process [4]. The system state is s = (t,a,w) where

t ∈ [0,T ] is the current time (counting down from T ), a is the vector of commitments, and each component

indicates the earliest possible wave ai ∈W in which location i ∈ I can be visited to cover its accepted open

orders.The value of w <W : tw ≤ t represents the earliest upcoming wave when the vehicle is again available

at the depot, and determines the next dispatch decision. Without loss of optimality, all commitments at one

node can be covered in one visit and therefore the state s does not carry disaggregated order information.

Figure 1 depicts a flowchart of all actions and transitions connected to a state s. An accept/reject decision is

immediately made after a request is placed. Rejection costs βi > 0, but keeps the system’s state unaltered;

acceptance is free of charge, but modifies commitments in a. A vehicle dispatch decision is made at states

where t = tw and represents a subset Q ∈ I of node visits to be cleared from a, paying the optimal TSP tour

cost for those locations. The vehicle becomes available at the depot after the tour’s duration; the special case

Q = /0 represents waiting for one wave at the depot at zero cost.

We solve a deterministic problem where the number of orders and arrival times are disclosed before the
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operation starts. Under this setting the DDWP-IA model collapses to the deterministic DDWP solved in [2]

via branch and cut approaches for routing problems. We develop a perfect information relaxation (PIR) that

computes a different optimal solution for each scenario realization of the random parameters [1, 5].

We develop a framework to produce policies for the DDWP-IA, where a system state s is coupled with

a state-feasible vehicle dispatch plan π (with potentially multiple planned trips) serving all commitments

in s along with a set of potential future delivery requests that have not yet realized. This dispatch plan is

also used to guide both vehicle dispatch and order acceptance decisions. Any policy P is fully determined

by two features; an initial dispatch plan designed before the operation starts and a dynamic update of the

plan when new information becomes available. One update of the plan might be performed immediately

after a request’s arrival and before its acceptance decision; the speed of this update is especially critical for

immediate acceptance. Additionally, another update might be executed immediately before making vehicle

dispatch decisions.

We initially provide a myopic policy (MP) that assumes no information regarding future arrivals. Thus,

it only updates the after each request’s arrival making optimal decisions with respect to the information

disclosed so far. Ihe initial plan is a TSP tour visiting all locations considered in the initial commitments a0.

MP tends to build a plan consisting of one single and long dispatch route, leaving few recourse possibilities

(or none); we thus heuristically set a maximum route duration dmax to force returns to the depot.

We later build proactive policies that incorporate probabilistic information regarding potential future

order requests. The first is an a priori policy (AP) in which a static dispatch plan π is determined before the

operation starts, using all probabilistic information available at time t = T . We compute the optimal a priori

policy in which no recourse actions are allowed and show its equivalence to solving a specific deterministic

DDWP instance. If AP is used statically, then it does not provide good results. An alternative policy (MPF)

uses AP’s dispatch structure to plan vehicle returns to the depot in a myopic policy. We predetermine a

subset of dispatch waves based on the optimal a priori solution, but dynamically assign orders to dispatches

and routes based on myopic updates. We believe that such a policy emulates and improves a system that

practitioners may use; it builds a reasonable dispatch structure based on probabilistic information and, once

the daily operation starts, the dispatcher assigns requests to time slots. A better but more involved idea is to

fully roll out the a priori policy (RP) and re-optimize the a priori problem and update the plan before each

order acceptance decision and each vehicle dispatch decision.

Because RP may be computationally expensive, we propose the Heuristic Acceptance Rollout Policy
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Table 1: Average results for each policy

metric \policy PIR bound FLEX MP (dmax = 252) AP MPF RP HARP

cost per request 11.5 13.3 15.4 17.0 15.2 13.9 14.2
request fill rate 93.4% 88.6% 85.5% 80.1% 85.6% 87.8% 86.9%
distance per visit 9.1 8.8 8.9 9.4 9.0 8.9 8.9

gapLB N/A 15.9% 35.0% 48.0% 33.0% 21.0% 23.8%

timedisp (sec.) 0.00 81.8 0.00 0.00 0.00 68.6 80.1
timeacc (sec.) 0.00 0.00 2.4 0.00 1.2 18.1 1.1

number of routes 2.69 2.51 1.94 2.48 2.21 2.52 2.52
initial wait in waves 2.87 3.21 3.43 3.09 3.35 3.20 3.21

(HARP) that only re-optimizes the a priori problem before each dispatch decision and heuristically solves

it upon order arrivals before acceptance decisions. We propose a fast solver-independent meta-heuristic to

implement HARP that runs over any dispatch plan π . It is a local search procedure that exploits the wave

structure of any feasible plan by running multiple neighborhood searches over it that solve instances of the

prize-collecting TSP (PC-TSP). To avoid local optima points, we randomly destroy local solutions and ran-

domize the evaluation of candidate solution. Moreover, each PC-TSP is solved with another metaheuristic

that speeds up computation.

3 Computational Results

We designed a set of computational instances under different settings of geography, problem size up to

|I| = 50 nodes, online request arrival rates, and accepted orders known before the operation starts. Table 1

presents average results for each policy. All experiments share a horizon of T = 882 time units, 7 homo-

geneously distributed waves, an order processing time p = 20, a cut-off time set at 2/7 of the horizon, and

penalties of the form βi = 2d0,i +1, where d0,i is the distance cost from i to the depot. The cost of the best

benchmark (MPF) is 9.3% higher than RP. The success of RP stems from optimization-guided decisions and

increased recourse opportunities by executing more dispatches compared to myopic policies. Its marginal

benefit is concentrated in improving fill rate rather than in routing efficiency; we found that RP especially

increases fill rates of requests placed relatively later in the horizon and on locations relatively farther away

from the depot. We also compared RP against an infeasible rollout of the optimal a priori policy that can

postpone order acceptance decisions throughout the day (FLEX). The marginal cost per request added by
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Figure 2: Average cost per request, fill rate ( f r), and distance per order versus order processing time (p)

imposing immediate order acceptance is estimated to be 4.5%. All policies differ in computation per dis-

patch (timedisp) and per acceptance decision (timeacc). The HARP policy speeds up timeacc 16.5 times on

average over RP incurring relatively small additional cost (2.2%).

We also tested our policies with different values of order processing times p to evaluate the importance

of implementing faster warehousing operations for SDD, and we conclude that an increase in p may directly

be transferred to an increase in cost; see results in Figure 2. The value of p seems to affect the system in

both aspects, routing efficiency and request fill rate. Moreover, we found that the average RP gap over PIR

and the gap difference over the myopic policies decrease as p increases.

Our experiments also show that having more dynamism in the order arrival process (in the form of a

later cut-off time) while keeping expected requests constant can significantly increase the system’s cost per

request; see Table 2. The design of the SDD service should set an appropriate value of tct that delivers

the necessary amount of service flexibility to the customer while providing enough of a time buffer to the

operation’s planner.

Table 2: Average performance indicators of RP versus cutoff time (tct)

tct cost per order fill rate (%) distance per visit accepted after tct (%)

126 27.4 76.2 10.1 21.0
252 17.1 86.8 8.9 65.0
378 9.9 95.7 7.5 94.8
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1 Introduction

On-demand meal-ordering platforms – online marketplaces where diners order their favorite cravings
from an array of restaurants – are growing at a fast pace [1], and the volume of meal delivery
operations is rising quickly, opening up new economies of scope, scale, and density, which emerging
providers are aiming to capitalize with the deployment of meal delivery networks. Such systems face
complex capacity planning problems and increasingly large dynamic pickup and delivery problems
that must be solved in (near) real-time [2, 5, 4, 3]. Due to the high dynamism and urgency of
arriving orders [7], meal delivery is the ultimate last mile logistics challenge: a typical order is
expected to be delivered within an hour (much less if possible), and within minutes of the food
becoming ready, thus reduc- ing consolidation opportunities and imposing the need for more vehicles
operating simultaneously and executing shorter routes (which can be costly).

A key to the success of meal delivery systems is their ability to respond to rapid swings in de-
mand throughout the planning period (and the geography). Since employing a permanent fleet of
vehicles can be prohibitively expensive, companies have resorted to “digital marketplace” business
models – where the supply of drivers who are independent contractors [6] is controlled by economic
incentives – an appealing strategy, first explored in the context of taxi and ride-sharing services, to
externalize fixed costs while enhancing the ability to respond to sharp surges in demand. However,
the independent contracting business model establishes a fundamentally different operating envi-
ronment: in exchange for taking on some of the risks associated with demand uncertainty, drivers
have a significant degree of autonomy, thereby adding yet another layer of complexity in the design
of appropriate optimization technology.

In this paper we introduce optimization algorithms tailored to solve the driver assignment (vehi-
cle routing) and capacity management (shift scheduling) problems in meal delivery. After a detailed
exposition of the main features of our routing and scheduling algorithms we conduct extensive com-
puter simulations to investigate the performance of our approach, and explore the characteristics
of meal delivery systems, in particular those related to driver autonomy. While still preliminary,
results suggest that our algorithmic ideas can be valuable in real-world implementations.

2 A rolling-horizon algorithm for driver assignment

2.1 A realistic simulation setup

To fully capture effects that propagate through time and geography, we focus on the study of
performance metrics for a full day in a complete city. The instances used in our simulation study
correspond to the activity logged by a major meal delivery company in Chicago, IL, during the
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years 2015 and 2016. The number of individual orders arriving throughout a day in a single instance
is typically above 2000 and can often exceed 3000.

The “real” time when orders are ready for pick-up, as retrieved from historical data, becomes
known after the fact, as the “actual” pick-up availability of an order is checked before every op-
timization. For planning purposes, a constant preparation time is used (20 minutes from the
placement time). If after this period the order is not available for pick-up, the ready time estimate
is increased by f minutes, where f is the duration of the period between optimization runs.

Driver shifts start and end times, and their starting locations, are obtained from historical data.
When drivers receive an assignment, they must immediately accept or reject it. Each decision is
modeled as a binary random variable related to: the travel time to the assigned restaurant, and
the proportion of assignments already rejected by the driver during their shift. After completing
their last assignment, drivers are assumed to wait idle at their current location for a brief time.
Afterwards, if still idle, drivers randomly select a nearby restaurant and move towards it. Closer
restaurants are more likely to be chosen.

2.2 The algorithm

The proposed rolling-horizon matching-based algorithm solves an optimization problem every f
minutes. At each optimization time t, it determines the available drivers best suited to deliver the
orders in Ut = {o ∈ Ot : eo ≤ t+ ∆u}, the set of upcoming orders with estimated ready times eo
at or before t + ∆u. Individual orders may be grouped to be picked-up as a batch and delivered
together, in a specified route, by a single driver. Next, tentative driver - order assignments are
defined by solving a sequence of matching problems. These assignments are examined and some,
but not necessarily all, are communicated to drivers, following a specific “commitment strategy”.

2.2.1 Batches and routes

To best utilize capacity, drivers may pick-up and deliver multiple orders, increasing the utilization
of drivers at the expense of some freshness loss. To create routes, we decide how many orders should
be batched together (target size of route), and then decide how orders are grouped and sequenced.

System intensity and a target batch size. A dynamic target size is defined in relation to
the amount of work that must be completed with the available resources during a given period of
time, e.g measured by means of a ratio of the form (#orders ready)/(# drivers available). It is intended to
encourage quick deliveries when there are fewer orders than drivers, and favor larger batches when
there are more orders than drivers and the system is under pressure. A parametric definition of
the target order batch size at optimization time t is:

Zt =

⌈
|{o ∈ Ot : eo ≤ t+ ∆1}|
|{d ∈ Dt : ed ≤ t+ ∆2}|

⌉
, ∆1 > 0,∆2 > 0 (1)

where eo is the estimated ready time of order o and ed is the time when driver d becomes available
for a new assignment. Note that it is possible that there are no drivers available before t+ ∆2, in
which case Zt is set to some default value.

Creation of single-restaurant delivery routes. Once a system-wide target batch size Zt has
been determined at time t, the set of upcoming orders at each restaurant r, Ut,r, is partitioned into
m = d|Ut,r|/Zte batches, using a parallel insertion procedure:
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Algorithm 1: Route generation at a single restaurant via parallel insertion
Input: Upcoming orders Ut,r, target batch size Zt

Result: m = d|Ut,r|/Zte batches to be assigned to drivers
Sort the orders in Ut,r by non-decreasing estimated ready time;
Initialize empty routes (batches) s1, s2, . . . , sm;
for o ∈ Ut,r do

repeat
Find the route s ∈ {s1, . . . , sm} and the insertion position is for order o into route s
which results in the minimum increase in route cost, where the route cost of s is∑
(p,q)∈s

TravelT ime(p, q) + β
∑
p∈s

ServiceDelay(p)

until |s| < Zt or insertion improves driver utilization;
Insert o in route s at position is;

end

Note that once a batch reaches its target size, an order is only added if this increases driver
utilization, i.e., the time per order delivered decreases. A multi-restaurant pick-up and delivery
route generation variant has also been developed.

2.2.2 A sequence of matching problems

Before making assignments, upcoming orders are prioritized in three groups:
• Group I: orders whose target drop-off time is impossible to achieve.
• Group II: orders not in I which cannot be feasibly picked up at their estimated ready time.
• Group III: orders that do not fall into the prior categories.

A batch is assigned the highest priority of any of its elements. By creating assignments sequentially
for these priority groups, urgent deliveries are likelier to find a better assignment than if all orders
were part one matching. We use the following notation: Ns is the number of individual orders in
route s; θ is a constant “penalty” for late pick-ups; πs,d is the pick-up time of batch s if assigned to
driver d (by definition, πs,d ≥ max

o∈s
{eo}); δso,d is the drop-off time of order o in batch s if assigned

to driver d (depends on πs,d); and xs,d is a binary variable for the assignment of batch s to driver
d. The objective of the matching balances driver utilization, and loss of freshness:

max
∑
s∈Ut

∑
d∈D

 Ns

max
o∈s
{δso,d} − ed

− θ
(
πs,d −max

o∈s
{eo}

)xs,d

2.2.3 Commitment strategies

Two-stage lazy commitment. An assignment can be decomposed into two travel segments: “in-
bound” travel to the restaurant, and an “outbound” delivery route. For each tentative assignment
(s, d), of order batch s and driver d, in the solution of a matching problem, this strategy dictates:

1. If d can reach restaurant rs before t+f and all orders in s are estimated to be ready by t+f ,
make a final commitment of d to s: instruct d to travel to rs, pick up and deliver orders in s.

2. If d cannot reach rs by t+ f , but completes their last assignment before t+ f , make a partial
commitment for d: instruct d to travel to rs and wait there for a finalized order assignment.

3. If d cannot start a new assignment by t+ f , ignore the assignment.
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4. Exception: If any order in s has been ready for more than x minutes, override the rule and
make a final commitment.

The motivation to send a driver to the restaurant without committing them to deliver a specific
batch is that, while travel should begin, the driver can be matched again in the next optimization,
while en-route,and the batch assigned may change. On the other hand, if the driver is busy before
t+ f , waiting for the next optimization will not delay the pick-up or delivery of any order.

Two-stage additive commitment. This strategy differs from the previous one only in case 2:
2. If d cannot reach rs by t+ f , but completes their last assignment before t+ f , make a partial

commitment : instruct d to travel to rs and wait there for a finalized order assignment, which
is guaranteed to include orders in s, and possibly more.

We call this variation “additive” because if s is partially committed to d at time t, then at opti-
mization time t+f , we force the batch assigned to d to include s. Hence, orders in a batch partially
assigned to d are guaranteed to be in the batch finally assigned to d. Such consistency is desirable
if drivers are paid in relation to some property of the orders they deliver.

3 Driver shift scheduling

Our approach to driver capacity scheduling relies on the solution of a “shift-cover” problem, which,
given a set of allowed driver shift structures, allocates enough drivers to cover an “activity profile”
– an estimate of the number of drivers required in the system at any time of a day. The shift-cover
problem is to minimize the total shift length required to cover the activity profile, i.e., to minimize
the area under a feasible resource profile, given the shift start times and lengths allowed. The
shift-cover problem can be formulated as a linear program.

4 Preliminary results

After tuning the algorithm parameters on a small sample of instances, we have conducted a series
of simulations in a set of day-long instances from Chicago, IL.We focus on two key performance
measures: (1) click-to-door, the time since an order is placed until the order is delivered, and (2)
ready-to-door, the time since an order is ready for pick-up until the order is delivered. The table
below summarizes our main preliminary results, with the caveat that not all the five experiments
shown have been conducted using the final implementation of the algorithm: all experiments must
be run again on a better controlled setting for a final draft. To protect the confidentiality of our
industry partner, we report all values relative to historical performance, e.g. a simulation with
click-to-door of 1.08 indicates a value 8% larger than in the historical record.

Average performance Click-to-Door Ready-to-Door

Baseline settings (historical shifts) 1.257 1.339

Commitment Strategy
Two-Stage Addditive 1.253 1.334

Two-Stage Lazy 1.261 1.345

Routes allowed
Single-restaurant 1.249 1.326
Multi-restaurant 1.266 1.352

Assignment rejection assumption
Always accept 1.142 1.167

Exponential rejection rule 1.146 1.173

Optimized shift-schedules (baseline settings) 0.92 0.86
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Vehicle routing with space- and
time-dependent stochastic travel times

Stein W. Wallace∗ Zhaoxia Guo† Michal Kaut‡

Vehicle routing, in all its variants, is one of the most studied problems in logistics.
But for historical as well as numerical reasons, the vast majority of papers are on de-
terministic problems. Stochastic versions have started to occur, see for example the
reviews (Pillac et al. 2013, Oyola et al. 2016, Ritzinger et al. 2016). The most studied
stochastic phenomenon is demand, followed by travel time (speed) , service time, and
finally, probably, random occurrence of customers.

Most vehicle routing problems (VRPs) are solved using heuristics, and a natural part
of doing so is to evaluate the objective function for a given solution. If that was easy,
most existing heuristics for vehicle routing could fairly easily be adopted to the case of
dependent stochastic travel times (or speeds). After all, most heuristics have two parts,
the search part and the evaluation part. This paper is only about the evaluation part.
In order to demonstrate our approach we shall need both a test case within the family
of VRPs and a heuristic, but neither of these represent contributions.

Our contributions are closely related to the many challenges set out in Gendreau
et al. (2016) on how to represent the high-dimensional dependent random vector of
travel times, how to generate scenarios for the underlying stochastic program, and how
to perform function evaluations in the case where travel times are stochastic and de-
pendent in time and space. By “time dependence” we mean that the travel time on a
link in one period is correlated with the travel time on the same link in other nearby
time periods. By “space dependence” we mean that travel times on close by links are
correlated, so that if there is a traffic jam on one link, most likely, but not for sure,
there is a long travel time also on neighboring links. This must be distinguished from
literature (stochastic as well as deterministic) covering “time dependent travel times”,
but where the time dependence only means that travel times (or expected travel times
in a few cases) are different in different time periods. To the best of our knowledge,
no paper allows the stochastics in travel times themselves to be time dependent; even
the stochastic approaches assume independence. In addition, space dependence has not
been considered in the VRP literature, although real-world travel times are both time-
and space-dependent.

∗NHH Norwegian School of Economics, Bergen, Norway
†Business School of Sichuan University
‡SINTEF, Trondheim, Norway
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Hence, our starting point is very general. We are concerned with the evaluation of
the objective function for a feasible solution (a set of vehicle routes) to any VRP, when
travel times are stochastic and dependent in time and space. The major question will
be how we can represent the stochastics, including how scenarios can be generated (as
discrete random variables will be needed), and how many scenarios are needed. The
number of random variables will easily be in the thousands (the number of road links
times the number of time periods), and care has to be taken in order to handle such big
dimensions.

Modeling the routes

In VRP formulations, the nodes in the underlying network are normally the customers,
described by the set N = {1, . . . , N}, and travel times (or distances) are modeled for
pairs of customers. But if we have data for travel times in an area, they are most
likely “on the map” – on the real road network – and not on pairs of customers. We
shall describe this map by the directed graph G = (V,L), where V = {0, 1, . . . , V } are
the vertices (nodes) and L = {1, . . . , L} are the (road) links. We have that N ⊂ V,
and V contains node 0, which is used to represent the depot. In deterministic models,
moving from distances on the real road network to pairs of customers is not much of
a problem. We can start from G and calculate the shortest travel time between each
pair of customers, and proceed using customer-pair travel times. But if travel times are
random, this is not quite as easy.

The shortest travel time path for a pair of customers will vary depending on the
realizations of road link travel times. In principle, one could calculate the distribution of
travel times for a given pair, but it would be rather challenging, as dependencies between
travel times between different pairs of customers would be extremely hard to describe.
Whenever two pairs of nodes shared a road link, the stochastic customer-pair travel
times would be positively correlated. Note that even if all road link travel times were
independent, the pairwise customer travel times would not. So assuming independence
for customer-to-customer travel times would imply that no pairs ever shared a road link
on the map, which to us seems extremely unrealistic.

If we accept that the stochastic data for the VRP lives on G, another modeling question
arises. Will a route in the VRP be given as a sequence of nodes from V in which two
consecutive nodes are directly connected by a road link or a sequence of customers from
N ? Both may make sense, and the two may of course occasionally coincide. In this
work we focus on the case when a route is a sequence of customer nodes, but our general
approach covers many variations. Our main focus is to handle travel time dependencies
consistently.

The above discussion is done as if there was only one time period. But we shall in fact
assume there are P time periods, and that there are travel time dependencies not only
in space but also in time. We therefore assume that a route in the solution to a VRP is
not just a sequence of nodes but also a starting time from the depot.
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Multi-dimensional distributions and scenario generation

Stochastic programs need discrete random variables. Creating these discrete random
variables from the background data (or from some modeling activity) is called scenario
generation. For VRPs with time- and space-dependent stochastic travel times, this is a
major undertaking, in fact, most likely the main bottleneck for solving such problems.
And if the sole goal of the scenario generation is to come up with examples in order to
test new algorithms, the issue is as straightforward as it is challenging; to come up with
test cases in very high dimensions that are meaningful for such investigations.

Most of the literature on scenario generation is about how to generate scenarios from
a distribution of some sort. That is an issue here as well, but there is another more
fundamental question when we have dependence in very high dimensions: To find a
meaningful distribution that can be the starting point for scenario generation. This
is particularly true if we wish to sample scenarios, as sampling requires something to
sample from. We shall spend some time here on analyzing the difficulty of coming up
with a reasonable probability distribution, as that is a problem likely to be an issue
for anybody facing dependent travel times. In our test cases we operate with up to
25,080 dependnt random variables. In such a case we are facing over 300 million distinct
correlations. Obviously, some shortcuts are needed.

We use the scenario-generation method from Kaut (2014) that allows for specifying
marginal distributions plus a subset of correlations, so we can concentrate on the most
important pairs of variables: speeds on links sharing a node (neighbors) in one period and
speeds on a given link in two consecutive periods. Notice that this is consistent with the
structure of solutions to VRPs – routes. This way, the number of specified correlations
(dependencies) become linear in the number of random variables. The method has the
property that marginal distributions are retained, so, in particular, the expected length
of any route is correct in any scenario set. But the method will produce some strange
correlations among pairs of random variables that are not part of the specification. We
shall see that this can be handled.

Stability

Gendreau et al. (2016) point out that the number of scenarios will likely be quite large.
But how large is that? The classical problem here is a trade-off between a solvable prob-
lem but where the results are just noise due to a bad representation, and a numerically
unsolvable problem (due to size) but where the representation is good.

This is a central question for any attempt to solve stochastic VRPs, and the answer will
depend on what method is used to generate scenarios. Since scenarios will be expensive
in the VRPs, meaning that the overall size of the optimization model very much depends
on it, and just storing the scenarios might be an issue, we want to have as few as possible.
But at the same time we need to know the quality of the solutions obtained using the
scenarios. In the talk we illustrate one way to test this question for a given optimization
problem, and a given scenario generation method. We shall show how a stability test
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Table 1: Out-of-sample values for SP and DP solutions for some triplets (N,K,P )

(18,3,3) (32,5,3) (48,7,3) (48,7,30) (48,7,60)

DP SP DP SP DP SP DP SP DP SP

0.87 0.85 2.26 1.98 6.07 5.46 12.68 11.38 12.68 11.65

can be developed to determine the necessary number of scenarios.

Test case

As a general observation, stochastic speeds are only of major importance when there
is an asymmetry between the effects of being early and being late. In particular, just
minimizing expected travel times with no special constraints such as time windows (hard
or soft) will not make it worthwhile to study stochastics. Hence, time windows (where
the effects of being early or late are very different) or penalties for particularly long
working days, are cases where stochastics is likely to matter.

As an example, we consider a two-stage stochastic VRP where there are penalties for
late arrivals of vehicles back to the depot, but no gains for early arrivals. The instances
are defined on a map of Beijing with 142 nodes and 418 road links. An instance is
defines by N (the number of customer nodes), K (the number of vehicles) and P (the
number of periods). N , K, vehicle capacity and customer demands are based mainly on
numbers from http://neo.lcc.uma.es/vrp/known-best-results/ so that the numbers for
each test instance make sense. So the cases we study have 418 × P random variables.
The objective is to minimize expected overtime pay.

So the first stage decisions is to pick K routes, in terms of sequences of customer
nodes, and the second stage decision is to travel these routes, picking paths between
them (as N is much smaller than V ) to minimize expected overtime.

Let us report a few numerical results, using the Beijing map, at this point. The sole
purpose is to show that this VRP is indeed one where stochastics matter. Table 1 shows
the out-of-sample results of five problem instances. As expected, the SP generates much
lower out-of-sample values than the DP. Taking problem (48,7,3) as an example, the
out-of-sample value (5.46 hours) generated by the SP is around 10% less than the value
(6.07 hours) generated by the DP. This shows that stochastics has a large effect on the
solutions in the test case. So, the main point of Table 1 is that our test case in this paper
is indeed one where stochastics matter. Notice that the largest case has 418∗60 = 25, 080
dependent random variables.

Experimental Results

The basis for our tests is still the map of Beijing with 142 nodes and 418 road links.
Consider Table 2. We have there studied stability for different values of N , K and P .
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Table 2: Number of scenarios needed and corresponding relative errors

(N ,K)
P = 3 P = 5 P = 15 P = 30 P = 60

S RD S RD S RD S RD S RD

(18,3) 50 2.3% 60 1.0% 30 1.0% 30 0.9% 20 0.9%
(32,5) 50 1.0% 15 1.0% 25 0.8% 15 1.0% 15 0.7%
(48,7) 15 0.9% 10 0.9% 10 0.7% 10 0.6% 10 0.7%
(64,9) 10 0.9% 10 0.9% 10 0.6% 10 0.6% 10 0.3%

Ideally, stability should depend on just P and L, as they directly describe the random
variables, but as expected, stability will depend on N and K as well, to some extent.
The main result to observe here is that for the larger problems, only ten scenarios are
needed to achieve solutions with a 1% error. We find that very encouraging. For the
somewhat smaller problems more scenarios are needed. This is a result of the fact that
our scenario generation method is a heuristic.

CPU times

The CPU time for solution evaluation involves two parts. The first part – T1 – is
solution-independent, and is used to generate the set of scenarios according to the chosen
scenario generation method, in our case Kaut (2014). The number of scenarios is taken
from Table 2.

The second measure shows the CPU time (in seconds) needed to find the objective
function value for one feasible solution. We do this by generating 5000 feasible solutions
for each of 20 problem instances, and report the average as T2. These instances and the
corresponding results are shown in Table 3. The tests were carried out on a laptop with
Intel Core i7-5500U CPU @2.4GHz and 8 GB RAM using MATLAB version R2009a.

Let us consider P = 30. This could, for example, correspond to a 10-hour day split
into 20 minutes intervals. In this case it too about 40 minutes to create the scenarios. It
might seem excessive to use forty minutes on ten scenarios. But remember that these ten
scenarios involve over 125,000 different numbers, and it is the carefulness of setting these
up that makes it possible to have so few scenarios. There are certainly quicker ways to
set up ten scenarios, but the question will then be if such stability can be achieved. And
again, this needs to be done only once per map.

Ones a scenario set is defined and found stable, it is T2 that determines the speed
of solving the stochastic VRP. In particular, it is interesting to see how much slower
a stochastic VRP solves compared to a corresponding deterministic case. To get an
estimate using our results, consider as an example the number 16 in the lower right
corner of Table 3. It shows that for this large case, with over 25,000 random variables,
it took 16 seconds on average to evaluate one feasible solution. This is a case with nine
routes and 10 scenarios, so a deterministic case would take about one tenth of that to
evaluate, since finding the deterministic travel time amounts to one scenario evaluation.
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Table 3: CPU times in seconds needed for stochastic instances

(N ,K)
P = 3 P = 5 P = 15 P = 30 P = 60

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

(18,3) 38 1.3 102 3.8 569 4.7 3590 4.5 19509 11.7
(32,5) 38 2.6 18 1.6 558 5.6 2448 5.1 19493 8.1
(48,7) 9 1.6 15 1.5 323 3.7 2367 6.3 18811 13.8
(64,9) 7 1.3 15 1.9 323 4.4 2367 8.7 18811 16.0

In other words, the scenario count in Table 2 is a good measure of how much slower a
stochastic approach would run. This is why it is so critical to have a good method for
generating scenarios so that stable results (at a chosen accuracy) can be achieved with
as few scenarios as possible. Our scenario generation method is particularly well suited
to VRPs.
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1. Introduction 

Traffic crashes and congestion are major costs to the collective and social well-being. According to the Federal 

Highway Administration, traffic crashes imposed an economic cost of $242.0 billion to the U.S. economy in 2010 

[1]. Total estimated cost of congestion to Americans was also approximately $124 billion in 2013 [2]. These figures 

show the vital influence of congestion and crashes on our daily trips. For many years, vehicle routing and scheduling 

have been used to investigate the effects of congestion on the roadway networks. Example studies include dynamic 

and stochastic vehicle routing applications that focus on the service time and demand at the nodes [3], models 

considering speed variations and dynamic travel times [4], stochastic and time-varying network applications [5, 6], 

and queueing theory-based applications [7]. For further information on the static and dynamic vehicle routing 

problems (VRP), please refer to [3, 8]. To the best of authors’ knowledge, traffic safety, in terms of crash risk on 

roadways, has not been introduced to the graph theory and transportation network optimization. This study is an 

important step towards filling this gap.  

2. Mathematical Modelling 

We propose a two phase dynamic vehicle routing and scheduling optimization model that identifies the safest routes, 

as a substitute for the classical objectives given in the literature such as shortest distance or travel time, through (1) 

avoiding recurring congestions, and (2) selecting routes that have a lower probability of crash occurrences and non-

recurring congestion caused by those crashes. This modeling approach has two phases: 

Phase I. In this phase, we formulate a mixed-integer linear programming which takes the dynamic speed variations 

into account on a graph of roadway networks, according to the time of day. The probability of crash as a function of 

the speed will be predicted using logistic regression models. However, in most locations, with an increase in the 

traffic density, and reduction in speed, the probability of having a crash increases [9]. Therefore, the first graph 

model identifies the routing of a fleet and sequence of nodes on the safest feasible paths. Several constraints, such as 

hard and soft time windows on each node, capacity, operation hours, and number of vehicles are introduced to 

ensure the fast and quality service. The speed variation with respect to the hour of the day is obtained via queuing 

models (e.g., M/M/1, GI/G/m and M/G/1) to capture the stochasticity of travel times more accurately. So, in our first 

model, travel times are dynamic and a function of speed. The objective function consists of two main components: 

(1) crash rates on each segment according to the time of the day and (2) modified Planning Time Index (PTI) [10], 

which is a function of travel time. In summary, the two components of the objective function allows one to (a) 

increase the trip safety by choosing segments with low crash probability, and (b) to avoid recurring and non-

recurring congested segments. Figure 1a shows the initial network, and Figure 1b indicates the routes identified as a 

result of Phase 1. 

Phase II. After the construction of the routes through the first model, we propose a second optimization model 

which considers each route as an independent transit path (fixed route with fixed node sequences). This model tries 
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to improve the service timing and avoid congestion by rescheduling the departure times of each vehicle from each 

node and finding the optimal speed on each arc. Figure 1c illustrates the scheduling decisions made in Phase 2. In 

the past two decades, heuristic and meta-heuristic algorithms such as tabu search, genetic algorithm, simulated 

annealing and ant colony optimization, have been successfully used to solve optimization models related to routing 

and scheduling [11, 12] and we will explore feasibility of these tools in our problem. In the following section, we 

discuss such solution methods to solve Phase 1 and Phase 2 problems. 

 
Figure 1 A schematic representation of modelling approach: (a) Roadway network (b) Result of Phase 1: routes identified (c) 

Result of Phase 2: route schedules determined, including departure time and the travel speed at each node 

3. Solution Approach 

Vehicle routing and scheduling are classified as NP-hard problems, hence, solving these models to optimality for 

medium to large scale networks is not computationally feasible. In this study, in order to achieve a fair tradeoff 

between the computation time and solution accuracy, we propose to solve this problem using a hybrid algorithm that 

combines a novel heuristic algorithm and an advanced meta-heuristic technique. A schematic approach of the 

solution approach is depicted in Figure 2. The solution of this high dimensional problem strongly depends on the 

initial solution. Therefore, in order to obtain a good initial feasible solution to the problem, we will use the heuristic 

algorithm developed by the authors in [13]. This approach uses a greedy local neighborhood search algorithm that 

works with polar coordinates of the nodes, where the depot is the initial pole, and expands the search range along the 

radius and azimuth, successively (See Figure 2a). The initial solution is then fed to the meta-heuristic algorithm, 

which develops itself to improve the solution quality at each iteration leading to suboptimal solutions. (Figure 2b). 

 
Figure 2 A schematic representation of solution approach (a) Polar coordinates-based heuristic to generate the initial solution (b) 

Meta-heuristic to solve Phase 1 and Phase 2 problems 

The validity of both mathematical models is tested against several small scale test problems (See the next section). 

We also plan to evaluate the accuracy and responsiveness of the model with respect to several medium and large 

scale benchmark networks followed by case study applications in the State of Florida. During all these steps, we 



plan to compare our model results to those from the classical models that only focus on the minimization of the 

travel time. This will let us identify those safe routes, which may have a higher travel time but less crash risk 

compared to those obtained from the classical models. 

4. Preliminary Results 

Figure 3 demonstrates a small test network in Miami, Florida, consisting of 4 nodes and a depot of interest (see 

Figure 3a). We studied arcs 3-4 and 2-4 for routing and scheduling decisions. For the two arcs, we modeled the 

relation between the observed crash frequencies (Figure 3b) and the speeds (Figure 3c) through GIS-based methods 

and logistic regression techniques (Figure 3d), and visually present this relation in terms of logit curves [14]. Please 

note that we focus on one iteration of the overall optimization process with two alternatives to travel from Node 4 to 

Node 3 (1) directly (Figure 3e), or (2) through node 2 (Figure 3d). The model in Phase 1 receives the crash 

probability and modified PTI as inputs, and determines the optimal route. In Phase 2, on the other hand, the model 

optimizes the scheduling of these current routes. Figure 3 shows how results may change according to the recurring 

and non-recurring traffic conditions for a safer and more reliable routing and scheduling. Figure 3e (travel directly) 

is optimal in the morning while Figure 3f (travel through node 2) is optimal in the afternoon. 

Figure 3 A case study in Miami, Florida 

 
(a)                                                                                     

Crash Analysis Speed Data Analysis Logit Crash Probability Curve 

 
                           (b) 

 
                             (c) 

 
                           (d) 

 
(e)                                                                                                          (f)  
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1 Motivation and modeling approach

The Vehicle Routing Problem (VRP) is one of the classic optimization problems in lo-

gistics. In the VRP, a set of vehicles is available for delivering (or picking-up) goods to

(from) customers. Each customer has some demand, and the vehicles have capacities. A

valid route begins at some designated depot, visits a sequence of customers, and finishes

again at the depot. Moreover, in a valid route the sum of the demands of the visited

customers does not exceed the capacity of the vehicle. The objective in the VRP is to

design a set of valid routes of minimum total cost visiting all the customers. The cost of

a route is usually measured in terms of its total length or duration.

In many practical scenarios some of the problem data might not be known at route

planning time. For example, traffic conditions might vary causing uncertainty in the

travel times. In other cases, customer demands are unknown and only disclosed upon

arrival of the vehicle at their locations. When randomness is present in the input data,

the general class of derived problems is called stochastic VRP ([5]). Many subclasses arise

depending on the element (or combination of elements) considered stochastic. We consider
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in this paper the case of VRP with stochastic demands (VRPSD), which undoubtedly is

the most studied by the scientific community.

Most of the approaches to solve the VRPSD are based on two-stage stochastic program-

ming. The first-stage decisions determine the a priori tour (single-vehicle case) or a priori

routes (multi-vehicle case). The second-stage decisions determine the recourse action with

associated recourse cost. The objective in these models is the minimization of the total

expected cost, composed of the first-stage (or a priori) cost and the expected recourse

cost. The recourse costs are determined by the restocking policy, which is a set of rules

that govern when the vehicle should perform a replenishment trip. Virtually all methods

developed for the VRPSD assume the detour-to-depot restocking policy, first stated in

[3]. This policy prescribes a replenishment trip if and only if the vehicle does not have

sufficient capacity to serve the current customer. This is clearly non-optimal, especially

when the current customer is located far away from the depot. However, incorporating

more involved policies in the (already complicated) two-stage models may quickly lead to

intractability. On the other hand, the problem of finding the optimal restocking policy

given a fixed a-priori route has been solved by a simple stochastic dynamic programming

algorithm ([7]). An optimal restocking policy potentially performs preventive replenish-

ment trips to avoid failures further down the route where a return trip could be costly,

and thus is significantly more sophisticated than the detour-to-depot policy. Optimal

restocking policies have been incorporated in intelligent heuristics for the VRPSD ([6]).

However, approaches to exactly solve the VRPSD considering the use of the optimal

restocking policy are not available. Our main contribution is to close this gap in the

literature, addressing concerns that methods for the VRPSD considering new recourse

actions need be developed ([4]).

The distinctive characteristic of our model is the simultaneous optimization of the a-

priori tour and restocking policy. We do so by first defining a general Stochastic Dynamic

Program allowing both sequencing and restocking decisions, and then restricting such

process by applying policy constraining. These constraints define a class of control policies

for the general SDP which must comply with some a-priori tour. By finding the optimal

policy in this class, we also arrive at the optimal restocking policy for some a-priori

tour. Therefore, we do not rely on the dynamic programming algorithm of [7] for route
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evaluation, but have the optimal restocking policy naturally as an output of the model. In

some sense, we unify the a-priori problem (finding an optimal tour given a fixed policy) and

the restocking problem (finding an optimal policy given a fixed tour) in the same model,

and hence we call it a unified model. This is a different approach than the one proposed

by [1] for the generalized VRP with stochastic demands, where route cost evaluation relies

on the dynamic programming algorithm.

The techniques we employ to build such model, in particular the policy constraining

ideas, provide a general framework for developing other models for the VRPSD, which

we also consider a significant contribution. Unfortunately, the price to pay for having

a unified model is a mixed-integer linear program with a number of decision variables

and constraints polynomial in the capacity of the vehicle. Nevertheless, by using policy

constraining and decomposition in different ways, one might derive models which com-

promise on the optimal restocking policy in favor of simplicity, still doing better than the

traditional detour-to-depot recourse models.

2 Computational results

The model was implemented and solved with CPLEX version 12.6.1 branch-and-bound

MILP solver. The subtour elimination constraints were added dynamically to the model,

whenever at some node of the search tree they were violated. All experiments were per-

formed on a Intel i7-4790 3.6GHz 4-core processor with available memory of 16 gigabytes.

Parallel processing was used whenever available. Our tests were conducted on a set of

simplified instances derived from literature instances. In these instances, the demand of

some customer i is zero with probability p0 and ui with probability 1− p0, where ui is an

integer ranging from 1 to 4. In all instances the capacity of the vehicle is set to 10. The

load of an instance is defined as the total expected demand divided by the capacity of the

vehicle. Each instance was tested under six different load scenarios, obtained by varying

p0. We compare the results with the solution obtained by applying the optimal restocking

policy to the TSP-optimal a priori tour (both orientations considered). We also compare

with the optimal solution when the detour-to-depot policy is used.

The standard implementation was able to solve instances of up to 50 nodes with a low
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vehicle load (0.75) within the time limit of two hours. Considering all load scenarios,

the optimal solution obtained with the unified model is on average 2.8% better than the

optimal detour-to-depot solution. This difference can be up to 8.7% in high load sce-

narios. The results also indicate that the optimal detour-to-depot solution is inferior to

the TSP-optimal a-priori tour coupled with the optimal restocking policy. The difference

is relatively small for low load (0.75 to 1.00) scenarios (average of 0.8%, maximum of

2.1%), but becomes significant in medium load (1.25 to 1.50) scenarios (average of 2.9%,

maximum of 4.9%) and high in high load (2.00 to 2.50) scenarios (average of 4.1%, maxi-

mum of 7.1%). Considering the much smaller computational effort required to obtain the

TSP-solution and optimal restocking policy, we conclude that using the detour-to-depot

policy in the single-vehicle case is unjustified. With the unified model, we are able to

further improve the solution quality. In low load scenarios, the difference is rather small

(average of 0.1%, maximum of 0.4%) and increases in higher load scenarios (average of

0.8% and maximum of 1.3% for medium load, and average of 1.7% and maximum of 2.0%

for high load).
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ropean Journal of Operational Research, 88(1):3–12, Jan 1996.

4



[5] Wen-Huei Yang, Kamlesh Mathur, and Ronald H. Ballou. Stochastic vehicle routing

problem with restocking. Transportation Science, 34(1):99–112, Feb 2000.

[6] James R. Yee and Bruce L. Golden. A note on determining operating strategies for

probabilistic vehicle routing. Naval Research Logistics Quarterly, 27(1):159–163, Mar

1980.

5



INFORMS TSL 
First Triennial Conference  July 26-29, 2017 Chicago, Illinois, USA 

46 | P a g e  
 

Vehicle Routing Models & Applications  
FC3: Statistical Data Analysis for Routing and Location  
Friday 2:45 – 4:15 PM            
Session Chair: Bruce Golden 

 

2:45  A Novel Statistical Algorithm for Very Large-scale Vehicle Routing Problems with Time Windows 
 Mayank Baranwal, Lavanya Marla*, Srinivasa Salapaka, Carolyn Beck 
 University of Illinois at Urbana-Champaign 
  
3:15 Facility Location and Design Decisions from Public Data 
 1Kalyan Talluri, 2Muge Tekin* 
 1Imperial College Business School, 2Universitat Pompeu Fabra 
  
3:45 Addressing Uncertainty in Meter Reading for Utility Companies Using RFID Technology 
 1Debdatta Sinha Roy*, 1Bruce Golden, 2Edward Wasil 
 1Robert H. Smith School of Business-University of Maryland, 2Kogod School of Business-American 

University 
  

  



A Novel Statistical Algorithm for Very Large-scale Vehicle Routing 

Problems with Time Windows 

Mayank Baranwal, Lavanya Marla, Carolyn Beck, Srinivasa Salapaka 

University of  Illinois at Urbana-Champaign 

Urbana, IL, USA 

 

The Vehicle Routing Problem with Time-Windows (VRPTW) is a core problem in the class of 

network-based resource allocation problems. These problems arise in city logistics, 

telecommunications, military applications, last mile delivery problems, liner shipping and inter-

city logistics. Significant, and sometimes majority, of operating costs incurred by large carriers are 

transportation costs, and so, even small percentage improvements in cost are often huge gains in 

absolute costs. Improvements of the order to 5-20% [1] have been achieved using computerized 

models for transportation planning, which lead to significant gains for the industry as a whole. 

 

While the VRPTW is a well-studied problem, the ever-advancing nature of the logistics industry, 

advancement of global positioning systems and radio frequency identification, and parallel 

computing has motivated further advances in both exact and heuristic methods. The continuing 

importance of the CVRP and VRPTW is highlighted by the fact that several variants of the VRP 

exist, with stochasticity, backhauls, with heterogeneous vehicle fleet, split deliveries, periodic 

routing and dynamic VRPs. More recent variations on the VRP include vehicle routing with 

electric vehicles and VRP with drones.  

 

The purpose of this paper is to introduce our novel modeling approach inspired from the field of 

information theory, to the VRPTW, and to demonstrate its significant advantage in achieving cost 

effective solutions with highly competitive solution times. Our approach, termed Deterministic 

Annealing (not to be confused with the deterministic variant of simulated annealing) is based on a 

statistical technique used commonly in data compression and model aggregation. Our approach is 

a unified approach that is applicable to vehicle routing problems of varying complexity. In this 

paper, we address the basic VRP, the CVRP, and the VRPTW using our approach. In future work 

we will present variations of our method to more sophisticated variants of the VRP. We present 

computational results in which we show that our approach provides competitive results in high 

efficient solution times, rendering large-scale solutions of the VRPTW possible in a few minutes. 

 

Our Approach 

Deterministic Annealing (DA) is an approach based on clustering methods developed in 

information theory. DA is well-suited to combinatorial clustering and resource allocation problems 

that require obtaining an optimal partition of an underlying domain, and optimally assigning 

resources to each cell of the partition. DA-based methods have been reported in a number of 

applications such as minimum-distortion problems in data compression [2], model aggregation [3], 

routing in multi-agent networks [4], locational optimization problems [5], and coverage control[6]. 

  

At this juncture, it is important to distinguish our Deterministic Annealing (DA) approach from 

the deterministic variants of simulated annealing, which are essentially large-scale neighborhood 



search-based approaches. As described in [7], the deterministic annealing approach used thus far 

in the literature is one in which the rule for accepting a new solution in the neighborhood during 

the annealing process is deterministic [8, 9, 10, 11].  

 

In contrast to this, our modeling framework is not a large-scale neighborhood approach in the 

classical sense. DA is based upon formulating the system as that of maximizing the Shannon 

entropy (a global measure of the system), while minimizing the distortion (a local measure). This 

is achieved by minimizing the free energy, which is written as a Lagrangean function. In the DA 

algorithm, the free energy is deterministically minimized at successively reduced temperatures 

over repeated iterations. To ensure clarity, we will refer to this approach as the DA approach while 

we will refer to the deterministic variant of simulated annealing as the deterministic annealing 

approach. 

 

Most of the problems that DA has been applied to are highly non-convex, computationally 

complex and contain several poor local optima that riddle the objective function surface. Similar 

characteristics exist for the VRP and its variants, including the phenomenon of clustering that is a 

natural aspect of grouping customer points. In this paper, we present an enhanced version of DA, 

which we call the Routing-enhanced DA, which simultaneously incorporates routing, scheduling 

and capacity considerations, which have not been considered in earlier DA literature.  

 

In our Routing-enhanced DA approach, scheduling and routing are not viewed as different 

problems, but are viewed as forms of clustering problems in a larger dimensional space. The free 

energy function is written as a Lagrangean, therefore constraints in the problem are not treated as 

`hard' constraints but violations are penalized. The approach is modeled as a continuous problem 

in terms of the free energy function, which is minimized using an annealing approach at 

successively reduced temperatures. During the annealing solution process, our solution 

methodology follows a cluster-first-route-second approach, where we find the set of customers to 

be served in the same cluster and route following that. While the variables in the formulation are 

integers, these constraints are relaxed to begin with. The annealing approach decreases the 

temperature with multiple iterations at each temperature value. However, once the annealing 

temperature reaches zero, we get a solution that solves the unrelaxed problem, that is, a solution 

that satisfies the integrality constraints. 

 

This property of working with the relaxed continuous problem before reaching the solution 

provides a significant benefit in terms of searching for global optima while reducing computational 

time. Our approach also incorporates a tunable set of ̀ velocity' parameters that controls the relative 

importance of scheduling and routing; allowing for small violation in time-windows to reduce total 

travel time or decreasing scheduling violation to increase travel distance.  

 

Contributions  
 

We present a flexible and generalizable heuristic modeling approach for the VRPTW that can solve 

large-scale instances significantly more effectively than models currently existing in the literature.  

 

(1) Our first contribution is to enhance the information-theoretic DA method from its basic 

clustering framework to a general framework in which capacity, routing and scheduling 

constraints are incorporated simultaneously. We formulate our DA-based VRP approach 



to the basic VRP, the CVRP, and the VRPTW. Our Routing-enhanced DA formulation 

flexibly incorporates constraints that enforce specific customers to be served by the same 

vehicle, fuel burn constraints, constraints on package volumes or weights and the number 

of shipments in each vehicle.  

(2) Analytically, we demonstrate that the CVRP and the VRPTW formulations form a second-

order non-linear system, and show that the algorithm convergences, and is equivalent to a 

gradient descent. We also show that the fast rate of convergence of this approach is due to 

the relative insensitivity of the objective function to changes at temperatures other than 

`phase transition' temperatures.  

(3) Quantitatively, we show how the velocity parameters of this approach can be used to trade 

off between the routing and scheduling constraints. We discuss the changes in the route 

design with varying values of these parameters, and how this provides flexibility to 

operators in designing such solutions. 

(4) We show that our Routing-enhanced DA approach is practical and particularly effective 

for very large-scale instances. We demonstrate quick and good-quality results on 

proprietary instances drawn from the real-world operations of a last-mile delivery carrier. 

In addition, we test our approach for the Gehring and Homberger benchmark instances 

[12], which have 200, 400, 600, 800 or 1000 customers. On these instances, we show that 

our approach can result in solutions with tour lengths within 5% of the best-known 

solutions, with small time-window infeasibilities. 

 

The Basic DA algorithm 
 

The basic DA algorithm addresses the question of clustering or facility location – given N number 

of demand points i=1,2,…N with priorities �(��), find the locations �� 	of j=1,2,,..,K facilities that 

minimize the distance traveled by the customers to the facilities. The objective therefore is:  

min{
��},	
��∈{�,�}
∑ 
��������

��(��)
�

���
����
�

���
�(��, ��)�       !       "

#

 

Previously existing heuristics such as Lloyd’s algorithm are sensitive to initialization and converge 

to local minima. Deterministic Annealing (DA) addresses the facility location problem by 

smoothing the objective function and tracking the minimum as smoothing vanishes. 

 

DA addresses smoothing of the objective function by ascribing partial associations of each �� to 

every facility �� through association probabilities $(��|��).  
 

Let &'	be the modified distortion term given by  &' = ∑ $(��)∑ $)��*��+�(��, ��)��������  

 

DA chooses a probability distribution $)��*��+	that maximizes Shannon’s entropy 

, = −�$(��)�$(��|��) log $(��|��)
�

���

�

���
 

under the constraint of minimizing distortion. Thus we consider minimization of the following 

Lagrangian (Free Energy) function: &' − �
1, ≔ 3 



 3 is shown to be convex at low 4, and is non-convex as 4 increases. 4	is also defined as the inverse 

of the annealing temperature T, that is decreased in successive iterations.  

 

DA algorithm: 

 

Step 1: ∀4 > 0, iterate between the following two steps until convergence: 

(a) Compute the Gibbs distribution that minimizes free-energy 3, i.e. 

$)��*��+ = 891:(;�,<�)
∑ 891:(;�,<�)����

 

 The Gibbs distribution captures the association of vehicle = to demand point >. 
(b) Update the resource locations ?��@ as 

�$(��)$)��*��+ A�)�� , ��+A�� = 0
�

���
 

 Note: For �)��, ��+ = 	||�� − ��||B B, the update equations simplify to 

�� = ∑ $(��)$)��*��+������
∑ $(��)$)��*��+����

 

     Step 2: Increment 4 till 4CD; and repeat Step 1.  

 

Our approach: Routing-enhanced DA enhanced for the VRPTW 
 

The Routing-enhanced DA algorithm enhances the basic DA from a clustering formulation to 

include scheduling, routing and capacity constraints. We allocate a vehicle = to a demand point > 
in a pre-ascribed time window EF�,GHDIH, F�,JK:L such that the capacity constraints of each vehicle 

are not violated and a feasible tour for each vehicle across the customers it serves is found.  

 

Modeling scheduling constraints: For simplicity, we choose property �� of demand point > to be 

the mid-point of the associated time-window, i.e., �� = H�,MNOPNQH�,RST
B 	The scheduling component of 

the distortion function �)��, ��+, captures the penalty of not servicing shipment, >, by vehicle, = in 

the middle of the time window. Expected distortion, &' = ∑ $(��)$)��*��+�(��, ��)�,� , where, 

�)�� , ��+ = 	||�� − ��||BB	 
 

Modeling Routing and tour-length constraints: We let the property �� ∈ ℝB of demand point > 
represents its locational coordinates, while adding the minimum tour-length constraint into the 

free-energy term as:  

3V = 3 + X Y� �)�� , ��Q�+ − Z�
��� [ 

We adopt an Elastic Net approach to find optimal tour-length, Z. The tour-length is controlled by 

appropriately varying X and 4. 



Modeling capacity constraints: Let the total allocated capacity of vehicle (facility) = be ]�, we 

address capacity constraints through a modified Gibbs distribution 

$)��*��+ = ]�891:(;�,<�)∑ ]^891:(;�,<_)�̂��
 

Because the marginal distribution, $)��+ = ∑ $(��)$(��|��)� , therefore, we have 

$(��): $(�B):⋯ : $(��) ≈ ]�: ]B:⋯ : ]�, and capacity is allocated in a proportional fashion. 

 

Modeling routing and scheduling constraints: For each customer location i, we define property 

 

�� =
cd
dd
e �� (�)

�� (B)f
B )F�,GHDIH + F�,JK:+gh

hh
i
, where j�� (�), �� (B)k are the locational coordinates of the demand 

point >, and l is a velocity parameter that allows the tradeoff of routing and scheduling 

constraints. We provide details in our paper on the approach to solve the modified free energy 

function and guidelines on how the velocity parameters can be tuned during the algorithm. 

 

We also provide results on convergence properties of the algorithm and other theoretical properties 

that demonstrate the efficiency of our approach. 

 

Preliminary Computational Results 
Our preliminary computational results on the Gehring-Homberger instances [12] of size 1000 

customers (consisting of clustered customers C2, random customer locations R2 and mixed 

locations RC2) demonstrate that improved tour distances and highly improved computational 

times can be achieved through our approach. These improved travel distances are a the cost of 

violation of about 5% of time windows to small extents, which can be further traded off by varying 

the velocity parameter l, possibly resulting in increased travel distances. However, our approach 

also provides a practical and controllable way for the system operator for trading off distances and 

times, and computing the value of on-time service. 

 
Existing best (distance, computation 

time) 

Our DA approach (distance, 

computational time) 

C2 16680.16 (≈120 min) 15415.31 (18 min) 

R2 28874.02 (≈80 min) 18488.60 (12 min) 

RC2 24005.78 (≈100 min) 17302.47 (12 min) 
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1 Abstract

There has been a tremendous increase in the size, scope and availability of public data, yet it is
not clear how a firm might effectively use it. Analytical studies rarely seem to go beyond summary
statistics and attractive visualizations. In this paper, we present an application based only on
publicly available data in which a restaurant chain makes location and design decisions (e.g. cuisine
type, price point, size, capability to serve groups) for a new restaurant so as to maximize its profit.
We assume customers patronize restaurants based on review ratings and proximity to the restaurant.
We combine Yelp review data sets with demographic and geographic data to build a model of demand
and use it to formulate an optimization problem that recommends the top k alternatives.
Keywords: facility location, multinomial logit, mixed integer programming, online customer reviews.

2 Introduction

Traditional location theory used to assume that customers patronize the closest facility. The seminal
work in this line is by [1] that studies the conditions of equilibrium in case of two facilities on a
line. Later, [3] generalizes it to a network. However, customers are affected by other factors, too.
For instance, in the case of choosing a restaurant they may consider price, service quality, parking
option etc.. Thus, facility attractiveness levels need to be incorporated into the model.

Customer choice models generally assume that customers are utility maximizers and multinomial
logit (MNL) framework is commonly used as a utility model. MNL can also be used in facility
location models and alternative solution methodologies are proposed to optimally locate k facilities.
For example, [4], [5] and [8] study non-linear model formulations. [9] present a comparison of
linear reformulations. Considering only locational decisions is a limitation since it is necessary
to simultaneously determine the facility’s features. Later on, [6] and [7] extend it including both
location and design as decision variables. Yet, they assume customer choice parameter estimates
are known a priori. Conversely, [2] study to estimate the demand at a single new facility but there
is no optimization aspect.

In this paper, we assume customers patronize restaurants based on review ratings and proximity
to the restaurant. We essentially build up a facility location model and validate it based on how

∗Imperial College Business School, South Kensington, London SW7 2AZ, e-mail: kalyan.talluri@imperial.ac.uk
†Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain
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customer reviews affect this decision. Our study fills an important gap by combining estimation of
customer choice model and optimization of facility location and design in a competitive environment
based on customer tastes and demographics.

2.1 Data and Model

This study consists of two steps. The first step is about demand modeling and the second one is
about location and product design decision once demand information is gathered. Next, we give a
brief description on the available data.

We collect restaurant data from the Yelp Dataset Challenge [13] that contains business (e.g.
cuisine type, price range−number of dollars, 1$ to 4$, latitude/longitude coordinates, zip code) and
review (e.g. number of reviews, average review rating, distribution of ratings) data. It also provides
true/false information on restaurant attributes such as delivery, credit card option, parking service.

We limit our study to restaurants from Las Vegas, NV, which includes 4428 restaurants and
498923 customer reviews. We gather spatial consumer distribution from [12] at grid level, that is
given approximately at 1 km2 distance. Moreover, we obtain transient tourist population via hotels.
Local population of Las Vegas is 2027828, after accounting for transient population, it increases to
2131185. We assume demand is aggregated at these grids and in total 1810 grids exist. Next, we
study customer choice model using MNL to obtain estimates of customer choice behavior parameters.

2.1.1 Customer Choice Model

We gather geographic data at grid level to account for variation of population size. Grids represent
the neighborhoods of population zones, denoted by G and restaurants are located in nodes I. Let
ni denote the number of reviews for a specific restaurant. Then, the total number of reviews
can be obtained as: n =

∑
i ni. In our model, we assume customers choose facilities with certain

probabilities and the customer choice is influenced by MNL function of their utility. We consider
utility of a restaurant as a linear combination of review rating ri and proximity to the restaurant
dig. The utility of a restaurant i from grid point g is

Uig = Vig + εig

where
Vig = αri + βdig

and the probability of restaurant i to be chosen by a population located at grid g is defined by the
expression:

Prig =
eVig∑
i e
Vig

Total number of customers residing at grid g is denoted by Mg, g ∈ G. We take number of
reviews as a proxy on demand at each restaurant. As a supporting evidence, we collect a sample of
booking data from [10] and verify that the correlation between number of reviews and demand is
quite high, for this sample it is 80.16%. Therefore, based on the assumption that a fixed fraction f
of the visitors leave reviews, demand at any restaurant is given by

Ni = f(
∑
g

MgPrig) (1)
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Summing this overall restaurants in the city, we obtain total number of reviews

N =
∑
i

Ni = f(
∑
g

Mg

∑
i

Prig) (2)

Dividing (1) to (2), we obtain

Ni
N

=

∑
gMgPrig∑

gMg

∑
i Prig

=

∑
gMgPrig∑
gMg

where ∑
i

Prig = 1

Estimate Std. Error t value Pr(>|t|)
α 0.46 0.05 9.43 0.00
β -0.07 0.04 -2.02 0.04

Table 1: Demand as a function of ratings and distance

We assume demand D for a given review rating r is a function of grid g, cuisine c and features
vector a; D(g, c,a|r). We consider the probability of getting a review rating r depending on location,
cuisine and features of a restaurant; Pr(r|g, c,a). Estimation of this probability creates a challenge
since there are many grids without a certain cuisine-features combination of a restaurant. Therefore,
review rating distribution is unknown for them. We apply non-negative matrix factorization on Yelp
reviews data to develop a spatial notion of attractiveness of a location.

2.1.2 Non-negative Matrix Factorization with Side Information

Each restaurant i of cuisine c has some restaurant-specific information (e.g: price-point, take-out
option etc.) that are captured in ai. We would like an estimation model that given some planned
restaurant features will make a prediction of its rating distribution. Our model is that rating
distribution of restaurant i is given by

ri ∼ Poisson(γai + pTg qc)

The parameters are γ’s and the latent factors are p and q’s. Note that γ is common to all restaurant
types. p is grid-specific and q is cuisine-specific. The aim is to find the optimal parameters to
minimize the loss function:

min
p∗,q∗,γ∗

∑
i

(ri − γai − pTg qc)2 + λ(||pTg ||2 + ||qc||2 + ||γ||2)

where λ is the regularization term to avoid overfitting.

We apply stochastic gradient descent method. We take regularization weight, λ = 0.1, dimen-
sionality of latent feature space, k = 3, number of iterations 30 and learning rate γ = 0.01. We use
Root Mean Squared Error (RMSE) to evaluate accuracy of predicted ratings:

RMSE =

√∑
(ri − r̂i)2
T
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where T is the number of observation, ri is the actual rating for restaurant i and r̂i is the predicted
rating. We find that addition of price range, p, good for groups attribute, g, take-out option, t,
credit-card option, cc, as side information improves test data set errors by around 13% (Table 2).
We also notice that training data set errors without side information is lower, this can be due to
the restricted model structure with features and not allowing as free training as no features case.
Overall, the model performs quite well, we observe low RMSE. Also, we compare actual and mean
of predicted ratings given by the rate of Poisson distribution on a sample of cuisines (Table 3).

No features Good for Take-out Accepts Price Range
Groups Possibility Credit Cards $1,$2,$3,$4

Estimation γ = 0 γg = 0.641 γt = 0.506 γc = 0.742 γp = 0.575
Test data 0.855 0.742
Train data 0.591 0.656

Table 2: Multiple Features k=3, 30 iterations: RMSE, covariate weight on rating, γ

Cuisine Actual Rating Predicted Rating
Barbeque 3 2.800
Burger 2.5 2.602
Chicken 3 2.636
Fast Food 2.75 2.724
Indian 3 3.208
Peruvian 2.75 2.831
Sea Food 3.75 3.188

Table 3: Cuisine rating predictions at grid centered at (-115.3792,36.4958). Total number of grids
are 639, cuisines are 61. The sparsity level is 92.2%

2.1.3 Optimization

Once we obtain customer choice behavior parameters, we can use them as an input for the optimiza-
tion problem. We assume that all the grids in the network are candidates to location of the facility.
Let us denote the locational decision variable xg, taking value 1 if a new facility is located at grid g
and 0 otherwise. We obtain commercial rent prices at zip code level from [11] and we use ($/square
feet) as a fixed cost, C, of opening a facility. Our aim is to recommend the top k alternatives of
location-design combination. The problem can be modeled as a mixed integer non-linear program:

maxg,c,a piE[Di(g, c,a)]− Cigxg
s.t. Di(g, c,a) =

∑
g

MgPrig ∀i ∈ G,

E[Di(g, c,a)] =
∑
r

E[Di(g, c,a)|r]Pri(r|g, c,a) ∀i ∈ G,

Prig =
xge

Vig∑
j∈G xje

Vjg +
∑
j∈I e

Vjg
∀i, g ∈ G,

Vig = αri + βdig ∀i, g ∈ G,∑
g∈G

xg = 1,

(3)
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Prig ∈ [0, 1] ∀i, g ∈ G,
Di(g, c,a) ≥ 0 ∀i ∈ G,
xg ∈ {0, 1} ∀g ∈ G.

(4)

3 Contribution and Future Extensions

We present an application based only on publicly available and free data. Specifically, we focus on
restaurants but our idea can be beneficial to a lot of businesses such as hotels, retail stores for which
customer reviews play an important role in decision making. Our study offers a twist to facility
location problems by estimating customer choice model parameters and optimizing facility location
and product design. We aim to extend it by integrating demographics information and customer
choice factors such as variety-seeking, saturation effects.
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Introduction

Utility companies read the electric, gas, and water meters of their residential and

commercial customers on a regular basis. Typically, for a residential customer, a meter

reader visits and manually reads a meter at the site. Utility companies are interested in

generating short and balanced routes where all streets with meters that have to be read

are traversed.

In the late 2000s, the use of radio-frequency identification (RFID) technology increased

and automatic meter reading (AMR) using RFID technology was adopted for commercial

use by utility companies. An AMR system has two parts: RFID tags and a truck-

mounted reading device. An RFID tag is connected to a physical meter. The tag encodes

the identification number of the meter and its current reading into a digital signal. The

truck-mounted reading device collects the data automatically when it approaches an RFID

tag within a certain distance. Utility companies would like to design the routes of the

trucks (vehicles) to cover all customers (meters) in the service area and minimize the total

length of the routes or the total cost of the routes. The use of RFID technology in meter

reading changes the routing problem from a standard vehicle routing problem (VRP) over

a street network to a close enough VRP (CEVRP) over a street network. Substantial

savings over traditional solutions are possible by developing routes that exploit this close

enough feature, i.e., the meter readers have to be within a certain distance from the

meters to read them and not manually visit each one.

There are issues with RFID technology that gives the meter reading problem a great

amount of inherent uncertainty. The signal transmitted by an RFID tag occurs at regular

time intervals, and is not continuous for energy conservation purposes. This leads to the

possibility of a missed capture of a signal if the truck with the receiver is within the

range of the meter only for a short time. Also, the signal range of a meter can vary from

the range specified by the manufacturer. The signal range can be affected by weather

conditions and surrounding obstacles. These unplanned missed reads can lead to increased
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costs for a utility company when a truck has to be sent at some later time to read the

missed meters.

Research Goal

Published papers have not considered the issues with RFID technology and thereby

have not taken into account the inherent uncertainty in the meter reading problem. The

main contribution of our research is to address the issues of RFID technology by gen-

erating robust routes that minimize the number of missed reads. Our goal is to bring

together data analytics and optimization techniques from vehicle routing to generate

robust routes. We want to design routes that are both short in length and better at

capturing the uncertain signals from meters.

Description of the Data Set

Data are provided by RouteSmart Technologies from ITRON (a technology and ser-

vices company) which manufactures the RFID transmitters and receivers that are used

by utility companies for meter reading. Data are in geographic information system (GIS)

format and have three layers.

1. Street Level Data. Information about the shape, length, and type of street segments.

2. Service Location Data. Geographic locations of all meters that are to be read. Each

meter is indexed by an unique account identifier (account id).

3. Reading Events Data. Records of all read events by the utility vehicle in the form

of the time of the read (with a resolution of 1 second), the account id of the meter

that is read, and the geographic location of the vehicle during the read event.

Integer Programming Formulation

The meter reading problem with RFID technology is formulated as a two-stage IP.

The Stage 1 IP finds the street segments that are to be traversed and the number of times

they are to be traversed for reading each meter with a pre-specified amount of likelihood

from the full route. The Stage 2 IP solves a mixed rural postman problem (MRPP) that

adds deadhead segments to the solution of the Stage 1 IP to obtain the full route. One
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interesting thing to note here is that the deadhead segments added in the Stage 2 IP

further increase the likelihood of reading the meters.

Let E be the set of the edges (undirected links) and A be the set of the arcs (directed

links) in a street network, denoted by G = (V,E ∪ A), where V is the set of nodes. Let

cj ≥ 0 be the cost (length) of street segment j. Let I be the set of the meters. Let pij be

the probability that meter i is read at least once from street segment j. Let Li ∈ [0, 1] be

the pre-specified amount of likelihood of reading meter i from the full route. Let xj be

the decision variable denoting the number of times street segment j should be traversed

in the full route. The two-stage IP formulations generate Pareto optimal solutions of Li

and the length of the shortest feasible route, i.e., the length of the shortest feasible route

will be greater for larger values of Li fed to the Stage 1 IP. The Stage 1 IP formulation

is given by

min
∑

j∈E∪A

cjxj (1)

s.t.
∏

j∈E∪A

(1− pij)xj ≤ (1− Li) ∀i ∈ I (2)

xj ≥ 0 and integer ∀j ∈ E ∪ A (3)

In (2), the xj’s are selected accordingly so that the probability of reading meter i

from the full route is at least Li. In (3), only integer values of the xj’s are allowed.

The objective function (1) minimizes the total length of the route. Note that (2) can

be linearized in the decision variables
∑

j∈E∪A xj × log(1− pij) ≤ log(1 − Li) producing

a linear integer program. If we have more than one meter reading vehicle, then we can

think of min-max objectives to balance out the routes for each vehicle.

Regression and Bayesian Updating

In order to solve the Stage 1 IP, we need to estimate the pij’s. We use a regression

model. The data are in the form of 1 and 0, where 1 indicates that meter i is read from

street segment j and 0 indicates that meter i is not read from street segment j. The pre-

dicted values of the dependent variable in the regression model have to be between 0 and

1, which will denote the probability pij. Based on the type of the data we have and our

requirements on the dependent variable, logit and probit models serve our purpose. The

independent variables in the models are: Shortest Distanceij (shortest distance between

meter i and street segment j), No of Pulsesj (number of pulses the meter reading vehi-

3



cle can receive from meters while traveling on street segment j), and No of Customersi

(number of meters within 500 feet surrounding meter i). Shortest Distanceij should have

a negative coefficient because the larger the shortest distance between meter i and street

segment j is, the lower the pij. No of Pulsesj is obtained from the amount of time the

meter reading vehicle spent on street segment j divided by the time interval between the

RFID signal transmissions. If the meter reading vehicle travels at a higher speed through

street segment j, then the time spent by the vehicle on street segment j is smaller and,

therefore, the No of Pulsesj is lower. No of Pulsesj should have a positive coefficient be-

cause the greater the number of pulses the meter reading vehicle can receive from meters

while traveling on street segment j, the higher the pij. No of Customersi is a measure of

density of meters in a region. It is important because with a large number of meters in

a region, the interference of the RFID signals are greater, so the signals die out quickly.

No of Customersi should have a negative coefficient because the greater the number of

meters surrounding meter i, the lower the pij.

Every time the meter reading vehicle collects readings, it adds more data to the

previous readings. The more data we have, the better will be the estimates of the pij’s

and, therefore, the routes generated by the two-stage IP will be of higher quality, i.e., the

routes will be even better at capturing the uncertain signals thereby further reducing the

number of missed reads. There are some serious issues if we use regression to update the

estimates of the pij’s at every stage with the new data. Suppose in time period 1 we have

data y1. We run the regression on y1. In time period 2, there is new data y2, so we run

the regression on y1 and y2 together as a single data set, and so on. We are regressing on

the older data sets repeatedly which makes this process of updating inefficient. Data sets

from different time periods are given equal weights in the regression which should not be

the case in practice. If we update the estimates of the pij’s at every stage when new data

comes in using concepts from Bayesian statistics then we can avoid the two drawbacks

faced while updating using regression. Bayesian updating works as follows

P (θ|y1) ∝ P (θ)L(y1|θ)

P (θ|y1, y2) ∝ P (θ|y1)L(y2|θ)
...

P (θ|y1, . . . , yT ) ∝ P (θ|y1, . . . , yT−1)L(yT |θ) = P (θ)L(y1, . . . , yT |θ)

θ is the vector of coefficients of the independent variables from the regression models.

P (θ) is the prior probability distribution on θ. L(y1|θ) is the likelihood function based
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on data y1 in time period 1. P (θ|y1) is the posterior probability distribution on θ at the

end of time period 1. All the information in y1 is captured in P (θ|y1). When new data y2

comes in time period 2, then P (θ|y1) becomes the prior, L(y2|θ) is the likelihood function

based on data y2, and P (θ|y1, y2) is the posterior at the end of time period 2. All the

information in y1 and y2 is captured in P (θ|y1, y2), which becomes the prior for the next

time period. Given data y1, . . . , yT , the posterior at the end of time period T will be

P (θ|y1, . . . , yT ) and it does not depend on the sequence in which data arrive. Bayesian

updating is much faster than regression since analysis is done only on the new incoming

data at each stage. New data can be given more weight than old data in Bayesian

updating.

Bayesian updating to estimate the pij’s can be done for both logit and probit mod-

els. Both models have their pros and cons. Error terms in logit models have a logistic

distribution, whereas error terms in probit models have a normal distribution. The lo-

gistic distribution has fatter tails compared to the normal distribution, so logit models

are more robust than probit models. Logit models have a better fit to data that are

more spread out in the tails. However, Bayesian updating is quite easy in probit models

as compared to logit models. An exponential family distribution is not the conjugate

prior of the likelihood function in logit models, so the posterior distribution is difficult

to calculate. In cases where both the logit and probit models fit the data equally well,

it is more convenient to do the Bayesian updating for the probit models. A more com-

plex method for estimating the pij’s performs Bayesian updating for hierarchical probit

models. The estimates of the pij’s from hierarchical probit models are more accurate but

difficult to implement as compared to the logit and probit models. Hierarchical probit

models account for the uncertain behavior of each meter separately while also accounting

for the similarity between meters.

Conclusion

Bayesian updating helps us to solve the two-stage IP at every time period when new

data comes in, thereby potentially helping to produce more robust routes by updating

the estimates of the pij’s. The main contribution of our research is combining vehicle

routing with Bayesian statistics and data analytics to address the uncertainty in the

meter reading problem. As mentioned, we will demonstrate these ideas using real-world

data.
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2Athens University of Economics and Business, Athens, Greece and Stevens Institute of
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Motivation and Literature Review

The Capacitated Vehicle Routing Problem (CVRP) aims to determine a cost-optimal transportation

plan for a fixed fleet of homogeneous capacitated vehicles so as to serve a set of customers with

known demand. The key decisions are the assignment of customers to vehicles and the sequencing

of customer locations that are visited by each vehicle. The objective is to minimize the total

transportation cost, which is often proportional to the total distance traveled. The Heterogeneous

Vehicle Routing Problem (HVRP) is a generalization of the CVRP wherein the fleet of vehicles is

not homogeneous. In the HVRP, one must additionally decide the fleet composition from a number

of available vehicle types, which may differ in capacity, maintenance costs, speed etc. Moreover,

the transportation cost is often composed of a fixed/one-time component (for e.g., reflecting rental

or capital amortization costs), in addition to a variable/recurring component proportional to the

traveled distance that is modeled in the CVRP. We refer the reader to the recent survey by Koç

et al. [2016] and the references therein for an up-to-date review of existing studies of the HVRP,

including applications, models and solution methods.

In all (but one) of the existing studies on the HVRP, it is assumed that customer demands are

deterministically known at the time of decision-making. However, in several real-world applications,

this information is often not available, and the actual demand is observed only during the execution

of the transportation plan. A popular approach is to solve the HVRP using some nominal values

∗gounaris@cmu.edu
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of customer demand and implement the resulting solution. The consequence of adopting this

approach is that the resulting routing plan may become infeasible during actual execution, leading

to potentially severe contractual, reputational and other kinds of penalties. These penalties are

particularly significant in the case of HVRPs since they are also associated with long-term fleet

dimensioning decisions. Therefore, anticipating and incorporating this uncertainty at the decision-

making stage is crucial.

In this regard, the work by Teodorovic et al. [1995] considers a stochastic HVRP where customer

demands are modeled as uniform random variables. The authors propose a continuous approxi-

mation heuristic to construct a number of potential routes for each vehicle type such that the

probability of failure/infeasibility along the routes is small. In contrast, our approach is based

on robust optimization and aims to determine a cost-optimal fleet composition and transportation

plan that is robust feasible, that is, feasible for all anticipated demand realizations. We assume

that only the support or uncertainty set of the uncertain customer demands is known, and that it

has a known polyhedral description. In the context of the CVRP under demand uncertainty, such

approaches based on robust optimization have been proposed by Sungur et al. [2008], Erera et al.

[2010], Gounaris et al. [2013, 2016]. However, it is not straightforward how these approaches can be

generalized to the HVRP, particularly in the context of efficient exact and lower bounding methods.

This paper attempts to achieve this objective and extend it by generalizing known metaheuristic

approaches for the deterministic HVRP to the robust setting.

Contribution

Our contribution is two-fold. First, we extend an Adaptive Memory Programming (AMP) meta-

heuristic algorithm developed for the deterministic HVRP [Repoussis and Tarantilis, 2010] to gen-

erate high quality solutions for the robust HVRP. Second, we develop a new integer programming

(IP) formulation and a branch-and-cut solution framework that produces lower bounds on the opti-

mal robust HVRP solution, thus allowing us to quantify the quality of the AMP heuristic solutions.

A novel feature of this formulation is the generalization of the rounded capacity inequalities (RCI)

from the CVRP to the HVRP setting, which is of interest in its own right because it results in a

new formulation for the deterministic HVRP.

In both upper and lower bounding approaches, we use known results [Gounaris et al., 2013] from

the robust CVRP to expedite the associated solution algorithms for two specially structured but

broad classes of customer demand supports. In the metaheuristic approach, we exploit these results
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to expedite the verification of robust feasibility of candidate solutions, while in the branch-and-cut

approach, we use them to improve the efficiency of the separation routine for the generalized RCI

inequalities.

Computational experiments conducted on a number of medium and large scale literature bench-

mark instances indicate that the AMP metaheuristic produces high quality solutions within short

computational times. We remark that our techniques are readily generalizable to a number of

routing models that are subsumed by the generic HVRP model, including the Fleet Size and Mix

VRP, the Fixed Fleet HVRP (both with vehicle dependent routing costs), the Site Dependent VRP

and the Multi-Depot CVRP. In the remainder of this abstract, we highlight the main features of

the branch-and-cut and the AMP approaches.

Branch-and-Cut Approach

The HVRP is defined on a complete undirected graph G = (V,E) with nodes V = {0, 1, . . . , n} and

edges E. Node 0 ∈ V represents the unique depot, and each node i ∈ VC := V \{0} corresponds to a

customer with demand qi ∈ R+. We model the customer demands as random variables and assume

only that their support is a known, non-empty polyhedron, Q ⊆ Rn+. The depot is equipped with a

set K = {1, . . . ,m} of m different vehicle types and each vehicle of type k ∈ K has a capacity equal

to Qk. We use the index set Ki = {k ∈ K : max{qi : q ∈ Q} ≤ Qk} to denote the set of vehicle

types that can feasibly visit customer i ∈ VC under any demand realization.

Our IP formulation uses three-index integer variables xijk to count the number of times edge

(i, j) ∈ E is traversed by a vehicle of type k ∈ K. In addition, binary variables yik indicate if

customer i ∈ VC is visited by a vehicle of type k ∈ K. In the interest of space, we present only the

robust generalized RCI constraints from our formulation. In the following, δ(S) denotes the subset

of edges in E with exactly one end-point in S ⊆ VC .∑
(i,j)∈δ(S)

xijk + 2
∑
i∈S

(1− yik) ≥ 2

⌈
1

Qk
max
q∈Q

∑
i∈S

qi

⌉
∀ S ⊆ {i ∈ VC : Ki 3 k} , ∀ k ∈ K (1)

These constraints enforce conditional lower bounds on the number of vehicles of type k ∈ K that

must serve a customer set S ⊆ VC . For any support Q, it can be shown that the above robust

generalized RCI constraints are both necessary and sufficient to induce a set of robust feasible

routes for the HVRP. Observe that since the maximization on the right-hand side does not depend

on any decision variables, we can replace this quantity with the optimal objective value of the

corresponding optimization problem.
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Our IP formulation contains an exponential number of inequalities (1), and hence, we use a

branch-and-cut solution algorithm. We remove the inequalities (1) and dynamically re-introduce

them whenever the current node solution is found to violate them by solving the associated sepa-

ration problem. We use a Tabu Search separation heuristic that iteratively constructs candidate

subsets S ⊆ VC through a number of greedy perturbations. Since our heuristic typically constructs

a large number of such subsets, it is crucial that the corresponding right-hand side of (1) can be

evaluated efficiently. In the case of general polyhedral supports Q, this would require the solution

of a linear program. However, in the case of specially structured disjoint budget or factor model

supports, this quantity can be computed analytically (see [Gounaris et al., 2013]), enabling fast

separation of the robust generalized RCI constraints.

AMP Approach

The AMP framework is based on the idea that good-quality locally optimal solutions encountered

during the search process are likely to share common features and characteristics (for e.g., sequences

of customers visited by the same vehicle type); therefore, it utilizes a set of long-term memories for

the iterative construction of so-called provisional solutions. These solutions are used as references

for restarting and intensifying the search procedure, while adaptive learning mechanisms are used

to update and modify the memory structures. In our approach, a reference set M maintains a pool

of diversified “elite” HVRP solutions encountered during the search process. This central memory

structure M is divided into subsets Mk, each corresponding to a particular vehicle type k ∈ K,

which are used to maintain vehicle routes belonging to solutions in M .

The proposed AMP approach consists of an initialization and an exploitation phase. In the

initialization phase, the initial reference set M is populated. For this purpose, a number of solutions

are generated via a greedy randomized semi-parallel construction heuristic algorithm, and they are

further improved via a Tabu Search algorithm. In the exploitation phase, a provisional solution is

constructed at each iteration using promising vehicle routes extracted from the memory structures

Mk. The score given to each stored route is based on the cost of the corresponding parent solution

and the appearance frequency of edge (i, j) ∈ E amongst the vehicle routes which are stored in

Mk. Note that only those routes are considered which constitute a structurally feasible solution;

that is, no two routes overlap and each customer is visited exactly once. Lastly, local search is

applied to the provisional solution using a Tabu Search algorithm and if a set of admission criteria

are satisfied, then the best encountered solution is used to update the reference set M .
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Both the initialization and exploitation phases consist of a number of node- and edge-exchange

local moves, and we only accept moves which guarantee that the resulting solution is robust feasible.

That is, if Rk = (0, Rk,1, . . . , Rk,nk
, 0) denotes a candidate route traversed by a vehicle of type k ∈

K, we must verify that the total demand on the route is less than the vehicle capacity
∑nk

l=1 qRk,l
≤

Qk for all realizations q ∈ Q. Observe that this is equivalent to checking if maxq∈Q
∑nk

l=1 qRk,l
≤ Qk

and this latter quantity is exactly the same as the one which appears in the right-hand side of

the robust generalized RCI constraint (1) associated with S = Rk. Thus, verification of robust

feasibility in the AMP framework requires computation of the maximum of a linear function over

a polytope. For general supports Q, this entails the solution of a linear program. However, for

disjoint budget or factor model supports, this quantity can be computed analytically, enabling fast

verification of robust feasibility of candidate vehicle routes.
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Winter road maintenance includes the removal of snow and ice on roadways and spreading 
materials for anti-icing, de-icing or increasing friction. Snow removal and material spreading are 
often accomplished by a fleet of snow plow trucks. Winter road maintenance is essential for 
providing safe and efficient service for road users (Haghani and Qiao 2001). It is also very 
expensive due to the high cost of equipment, crew, and materials.  According to a recent survey 
by the American Association of State Highway and Transportation Officials (AASHTO), 23 
reporting states spent in total approximately $1.1 billion from October 2014 to mid-April 2015 to 
pre-treat, plow, and spread chemicals and other materials on roadways. Optimizing winter road 
maintenance operations could result in significant cost savings, improved safety and mobility, and 
reduced environmental and social impacts (Haghani and Qiao 2001). 

This paper formulates and solves an arc routing problem (ARP) to optimize snow plow routing 
considering route continuity constraint. The transportation network is described as a connected 
direct graph. Given a preset depot location and sector region, the ARP is to design a set of routes 
such that all the road segments of a transportation network are serviced by a fleet of trucks based 
at that depot, subject to a set of constraints with the objective of minimizing the operation cost. 
There are two problem included in the routing design: 1) how often a road segment should be 
serviced, and 2) how to minimize the operational cost.  

How often a road segment needs to be plowed depends on the targeted Level of service (LOS). 
In the context of winter maintenance, LOS of a roadway is defined by the number of plows per 
day during a full-day storm. As shown in Table 1, a level A road requires 12 plows a day, a level 
B road requires 11 plows, and less busy roads need fewer services.  Since service cycles are 
different for different roads, a service schedule table is generated to combine road segments of 
different service levels. Then, route optimization is applied to each service levels’ networks.  
      One way to minimize operation cost is to minimize the total deadhead distance, that is, the 
distance traversed without servicing the road segment. In snow plow operation, there are three 
possible situations when a truck is traveling on a road segment—plowing the segment, traversing 
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the segment when it has already been plowed, and traversing the segment when it has not been 
plowed. The first case usually involves spreading materials as well, and the last two cases are 
considered as deadhead. In practice, the third case should be avoided because it increases deadhead 
and the traverse speed would be lower as the truck had to drive on the snow covered road. A good 
measure in this situation is the route connectivity. A connected route may consist of alternated 
service road segments and deadhead road segment, but it will not allow trucks traversing the 
segment when it has not been plowed. 

Level of Service  

LOS in the context of winter maintenance operation is a set of operational instruction and 
routing process that determines when, which and how often a road network should be serviced 
(Blackburn et al. 2004). Highway agencies of different states provide their own way to characterize 
LOS. (Haghani and Qiao 2001) and (Perrier et al. 2008) use priority treatment, road segment with 
high priority must be service before road segment with low priority. (Jang et al. 2010) use 
frequency treatment, road segments of different LOS have different cycle time, but their service 
route are created exclusively for each LOS class. 

 Iowa department of transportation (DOT) defines the quality of winter maintenance service 
by service frequency. Roadways with higher traffic demand require more frequent service. For 
example, roadways classified as service level “A” need to be serviced 12 or 13 times during a full-
day storm. That is, such roadways must be serviced at least once every 2 hours during a continuous 
storm. As shown in Table 1, service frequency requirements are defined for roadways based on 
the number of vehicles per lane per day. The number of vehicles is the sum of number of passenger 
cars and 1.8 times number of trucks. 

 
TABLE 1. Maintenance Service Levels 

Service 
Level 

Number of 
service per 

day 

Vehicles per 
lane per day 

A 12 or 13 > 8001 
B 10 or 11 5001 - 8000 
C 9 2501 - 5000 
D 7 1501 - 2500 
E 5 801 - 1500 
F 3 or 4 0 - 800 

 
A service network schedule that determines whether or not a road segment needs to be serviced 

in a timeslot is generated for the study network.  

Formulation 

A capacitated arc routing problem (CARP) is formulated to optimize route design. The objective 
is to minimize the deadhead distance to improve the operational efficiency and reduce cost. Let 
𝐺𝐺 =  (𝑉𝑉,𝐴𝐴)  be a directed graph where 𝑉𝑉 = {𝑣𝑣0,𝑣𝑣1, … , 𝑣𝑣𝑛𝑛}  is a set of nodes, and 𝐴𝐴 =
{�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗�:𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎  𝑖𝑖 ≠ 𝑗𝑗} is a set of arcs. The depot is represented by node 𝑣𝑣0. Define 𝑅𝑅 ⊆
A as the set arcs that requires service. Each arc (𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗) ∈ 𝑅𝑅  is associated with a demand 𝑞𝑞𝑖𝑖𝑖𝑖 , 
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expressed as the total amount of material needed to service the arc, a distance 𝑑𝑑𝑖𝑖𝑖𝑖  corresponding 
to the length of the road segment, and a time 𝑡𝑡𝑖𝑖𝑖𝑖 corresponding to the servicing time. Every arc 
(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) ∈ 𝐴𝐴 is associated with a deadhead time 𝑡𝑡𝑖𝑖𝑖𝑖′ . Define 𝑛𝑛𝑖𝑖𝑖𝑖  as the number of times arc (𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) ∈
𝑅𝑅 should be serviced in a service cycle. Let K be the set of vehicles. For every arc (𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗) ∈ 𝐴𝐴 let  
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖be binary variables, which equal to 1 if and only if arc (𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗) is serviced or traversed 
as deadhead from 𝑖𝑖 to 𝑗𝑗 in route k, respectively. Let T and W be the maximum route duration and 
the capacity of all vehicles. The CARP is formulated as follows. 

Minimize ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖  𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗)∈𝐴𝐴𝑘𝑘∈𝐾𝐾               (1) 

Subject to  

∑ (𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗) {𝑣𝑣𝑗𝑗:(𝑣𝑣𝑗𝑗,𝑣𝑣𝑖𝑖)∈𝐴𝐴} − ∑ �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖� = 0 {𝑣𝑣𝑗𝑗:(𝑣𝑣𝑗𝑗,𝑣𝑣𝑖𝑖)∈𝐴𝐴}                   (𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾) (2) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 =𝑘𝑘∈𝐾𝐾 𝑛𝑛𝑖𝑖𝑖𝑖                 (�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗� ∈ 𝑅𝑅) (3) 

∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗�∈𝑅𝑅                        (𝑘𝑘 ∈ 𝐾𝐾) (4) 

∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 =𝑘𝑘∈𝐾𝐾 0          (�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗� ∈ 𝑅𝑅,∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 <𝑘𝑘∈𝐾𝐾 𝑛𝑛𝑖𝑖𝑖𝑖) (5) 

∑ (𝑥𝑥𝑖𝑖0𝑘𝑘 + 𝑦𝑦𝑖𝑖0𝑘𝑘) = 1{𝑣𝑣𝑖𝑖:(𝑣𝑣𝑖𝑖,𝑣𝑣0)∈𝐴𝐴}                        (𝑘𝑘 ∈ 𝐾𝐾) (6) 

∑ �𝑥𝑥0𝑗𝑗𝑗𝑗 + 𝑦𝑦0𝑗𝑗𝑗𝑗� = 1{𝑣𝑣𝑗𝑗:(𝑣𝑣0,𝑣𝑣𝑗𝑗)∈𝐴𝐴}               (𝑘𝑘 ∈ 𝐾𝐾) (7) 

∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� ≤�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗�∈𝑆𝑆 |𝑆𝑆| − 1 + |𝑉𝑉|2𝑢𝑢𝑘𝑘𝑆𝑆                      (𝑆𝑆 ⊆ V\{𝑣𝑣0}, S ≠ ∅,𝑘𝑘 ∈ 𝐾𝐾)  (8) 

∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑆𝑆 ≥𝑣𝑣𝑖𝑖∈𝑆𝑆 1 − 𝑤𝑤𝑘𝑘𝑆𝑆             (𝑆𝑆 ⊆ V\{𝑣𝑣0}, S ≠ ∅,𝑘𝑘 ∈ 𝐾𝐾) (9)  

𝑢𝑢𝑘𝑘𝑆𝑆 + 𝑤𝑤𝑘𝑘𝑆𝑆 ≤ 1                        (𝑆𝑆 ⊆ V\{𝑣𝑣0}, S ≠ ∅, 𝑘𝑘 ∈ 𝐾𝐾) (10) 

𝑢𝑢𝑘𝑘𝑆𝑆,𝑤𝑤𝑘𝑘𝑆𝑆 ∈ {0,1}             (𝑆𝑆 ⊆ V\{𝑣𝑣0}, S ≠ ∅, 𝑘𝑘 ∈ 𝐾𝐾) (11) 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}             (�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗� ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝐾𝐾) (12) 

The objective function (1) minimizes the total deadheading distance. Constraints (2) are flow 
conservation equations for each vehicle. Constraints (3) state that each arc is serviced as required 
number of times in that service cycle. Constraints (4) guarantee that the capacity of each vehicle 
is never exceeded. Constraints (5) state that trucks cannot traverse on an unplowed road segment 
as deadhead. Constraints (6) and (7) require all routes to start and end at the depot. Constraints (8) 
- (11) prohibit the formation of disconnected sub tours and were explained in detail by Golden and 
Wong (1981). Finally, constraint (12) restricts 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖  to be binary.  

Route Connectivity Constraints 

Route continuity is a practical concern for operational convenience. Service route continuity 
constraint was first introduced by (Haghani and Qiao 2002). In their definition, service arcs in a 
route must be connected to each other, which is referred to as strong continuity in this paper. As 
shown in Figure 1, the top route satisfies strong continuity.  

As mentioned earlier, unplowed segments should not be traversed as deadhead. However, truck 
can traverse on an already plowed arcs as deadhead in middle of a service route. This is referred 
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to as loose continuity. In Figure 1, both the top route and the middle route satisfy loose continuity, 
although the middle route has deadhead segment between service arcs.  

Because loose connectivity allows routes including deadhead-connected service arcs, it tends 
to make the full usage of truck capacity and thus hele to reduce fleet size. In the situation where 
the number of lanes changes along a road, if trucks can service only one lane per run, it is highly 
probable that road segments with less lanes will be completed earlier than road segments that have 
more lanes. These serviced deadhead road segments will become a barrier to strong connected 
routes. Since the neighboring segments of these segments still need to be serviced. Loose 
connected routes are not affected by the heterogeneity in number of lanes along a road. 

The third route in Figure 1 is allowed by neither strong nor loose continuity.  

 
FIGURE 1 Service Continuity 

Solution Algorithm 

Since CARP is NP-hard (Golden and Wong 1981), exact method can only solve small size 
instances. This paper uses memetic algorithms (MA) (Lacomme et al. 2002) to solve the proposed 
model for snow plow routing. Single insertion, double insertion and swap (Tang et al. 2009) are 
used as local search move operators. To account for the route continuity constraint, after 
initialization and after each local search movement, the solution sequence must be adjusted to 
guarantee legal routes.  

A case study is conducted for the state highway road network in Dubuque County, Iowa. The 
transportation network includes 18 nodes and 36 directed arcs. Solutions can be found by the MA. 
However, MA generally took a long time to reach its optimal (e.g. 2 hours to solve one instance 
on the case study network). This is because loose continuity has largely limited feasible solutions. 
Future research will focus on developing algorithms that can generate feasible solutions in a more 
reasonable computational time.   
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Extended Abstract

Due to both economic and humanitarian importance, maintaining roadway
travel safety has aroused widespread interest from all levels of the society,
including citizens, government officials, industry practitioners, and academi-
cians. In the United States, the National Highway Traffic Safety Administra-
tion estimates the cost of improving safety by various ways of law enforcement
as high as $230.6 billion, a year-nearly 2.3 percent of the nation’s gross domes-
tic product (Blincoe et al. 2002). In addition, environmental sustainability
concerns make reduction of oil consumption an important goal for the trans-
portation sector, which is the biggest consumer of petroleum in the U.S. (69%
in 2011) (see Yavuz and Capar Forthcoming, and the references therein). An
important way of reducing transportation oil consumption is to improve fuel
efficiency of vehicles in use nationwide. Toward this objective, all major au-
tomotive manufacturers today offer not only more fuel-efficient traditional
(running solely on petroleum) vehicles, but also various alternative-fuel ve-
hicles.
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Electric vehicles are particularly interesting due to (i) the ubiquity of
electricity, (ii) lower per-mile cost than petroleum with today’s technology,
and (iii) lower per-mile greenhouse gas emission than petroleum with today’s
electricity generation mix. Greenhouse gas emission can be further lowered
with increased renewable electricity generation. However, (pure) electric ve-
hicle adoption is limited primarily due to the so-called range anxiety.

In the field of law enforcement, many police departments have already
adopted electric or other alternative-fuel vehicles. In this work, we focus on
highway patrol operations performed by state troopers, which differs from
police operations in regards to (i) geographical area coverage, (ii) number of
miles traveled by a vehicle, and (iii) the higher probability of involvement in
high-speed, long-distance chases. Therefore, pure electric vehicles do not fit
the problem addressed in this work because of its finite driving range and
limited recharging infrastructure. Hybrid electric vehicles (HEVs) that run
on electricity and gasoline fit well and can lead to both cost and greenhouse
gas emission savings by state troopers.

Scholarly works (see Steil and Parrish 2009, Keskin et al. 2012, Lou et al.
2011, Willemse and Joubert 2012, for example) are also rigorously pushing
forward more effective law enforcement plans, including effective patrolling
plans. One way of improving patrolling efficiency is focusing on patrolling
critical locations with high crash frequencies.

Speeding, driving under the influence, and other aggressive driving be-
haviors are among the leading causes of highway crashes and fatalities. State
officials continuously work to discourage such behaviors in several ways, in-
cluding: (i) increased data-driven enforcement; (ii) technological advances,
such as automated enforcement; and (iii) public information and education
programs (GHSA 2013). Data-driven enforcement involves developing strate-
gic countermeasures and operational plans using locally collected data and
hot spot information.

Hot spots are defined as certain combinations of highway stretches and
time of day with high frequencies of crashes. The visibility of law enforcement
officers at hot spots is known to be one of the key deterrents to aggressive
driving. Two streams of research have emerged in data-driven law enforce-
ment. The former is related to defining hot spots via clustering analysis of
historical crash and citation data (Anderson 2006, Chen and Quddus 2003,
Cheng and Washington 2005, Gatrell et al. 1996, McCullagh 2006, Miranda-
Moreno et al. 2007, Steil and Parrish 2009, Steil 2010). The latter, to which
this paper contributes, is concerned with the use of predetermined hot spot
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information in setting effective operational plans that enhance public safety
(Keskin et al. 2012, Li and Keskin 2014, Çapar et al. 2015).

In this work, for a given mixed patrol fleet consisting of traditional (gaso-
line or diesel) vehicles and HEVs and, we investigate optimal patrol routes
to visit time-critical hot spots. Our overall goal is to maximize the visibility
of the state troopers while minimizing the costs associated with utilization
of troopers. Therefore, we tackle a bi-criteria optimization problem.

Let the fleet consist of two types of vehicles, namely hybrid electric vehi-
cles (HEVs), and traditional gasoline or diesel vehicles (GDVs). Sets V1 and
V2 denote the sets of HEVs and GDVs, respectively, and set V = V1 ∪ V2
is the set of all vehicles. Fleet composition is known, i.e., |V1| and |V2| are
given. The HEVs and the GDVs are homogeneous within their respective
groups.

The HEVs have two modes of operation, electric and gas, and they operate
exclusively in the electric mode when the state-of-charge (SOC) is positive.
When the battery is depleted (i.e., SOC is zero) they switch to operating
in the gasoline mode and stay in that mode until SOC is increased through
a recharge. The SOC is defined in the closed interval of [0, 1] and changes
linearly with time. That is, it increases by γ per minute of recharging and
decreases by β per minute of traveling. We would like to note that γ depends
on vehicle as well as charging station characteristics, in that it is the minimum
of the vehicle’s and charging station’s limit charging rate per minute. In
the problem studied here, homogeneous HEVs and homogeneous charging
stations are assumed, thereby resulting in a constant γ. The HEV cost of
traveling in the electric and gas modes are che and chg, respectively, and the
GDV cost of traveling is cg per minute of travel.

The problem is defined on a network G = (N,A). N = S ′∪H∪D∪R∪S ′′

consists of five disjoint sets of nodes. S ′ is the set containing only node 0,
which is the source node where each vehicle starts the workday. H, D, and R
represent the hot spots, administrative task stations and recharging stations,
respectively. Finally, S ′′ is the set containing only node |H| + |D| + |R| + 1,
which is the sink node where each vehicle ends the workday.

The sets H, D, and R are populated as follows. H is obtained by splitting
an original set of hot spots into time sections described in Dewil et al. (2015).
D is obtained by replicating each original administrative task station |V |
times. Similarly, R is obtained by replicating each original recharging station
k times, where k is the maximum number of times a recharging station can
be visited in a workday. If there is a recharging station at the depot, it is
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included in the original set of recharging stations, thus R does not overlap
with S ′ or S ′′. If a hot spot or an administrative task location coincides with
a recharging station, it is reflected in the maximum allowed SOC gain at
that node, thus R does not overlap with H or D. Essentially R represents
dedicated recharging station visits, and the time spent on them cannot be
used for covering a hot spot or performing administrative tasks. Finally,
troopers are not allowed to perform administrative tasks while they cover
hot spots, due to the nature of the two activities, both of which require a
trooper’s full attention.

In the remainder of this work, we (i) formulate the emerging bi-criteria
optimization problem, (ii) investigate mathematical properties and special
cases of the problem that lend themselves to quick analytic solutions or trans-
formations to polynomially-solvable problems such as the minimum cost net-
work flow problem, and (iii) present a computational study using appropriate
algorithms on real-life data obtained from the Alabama Law Enforcement
Agency.
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Abstract

We focus on the design and optimization of an innovative self-sustained car-and-ride sharing
system. We study one of its special applications in improving the mobility of underserved
communities. In this system, we assume two types of demands: Type 1 demand arises from
customers who rent shared cars for private use and Type 2 demand arises from customers who
cannot drive but require ridesharing services that could be fulfilled by Type 1 drivers. We
propose a two-phase approach for optimizing resource pooling, supply-demand matching, and
service scheduling, to maximize the fulfillment of car/ride-sharing demand while maintaining
the cost self-sustainability of running the system. In the first phase, we allocate shared vehicle
fleet and maximize the total car/ride sharing requests to satisfy, while ensuring that enough
Type 1 drivers are accepted to serve Type 2 non-driver users. In the second phase, we design
routing and scheduling for both types of users. We provide preliminary computational results
of our two-phase approach by testing diverse instances.

1 Introduction

Sharing services are undergoing a fast rise in popularity and industrial growth in recent years. Car-
sharing companies such as Zipcar, Car2Go, and Maven have shown their success with fast growing
users. Via efficiently pooling idle resources, sharing services provide effective solutions to people’s
daily life needs. In this paper, we aim to design and optimize an innovative car-and-ride sharing
(CRS) system in which both carsharing and ridesharing services are provided to heterogeneous
users. In addition, the system is self-sustained such that customers with ridesharing demands are
served by volunteer drivers with carsharing demands. We focus on its application in improving the
mobility of underserved communities, where residents are experiencing transportation scarcity due
to poverty or geographically dispersed from resources.

1.1 Problem Description and Solution Approaches

We consider a CRS system that provides both carsharing and ridesharing services in a service
region. We target at underserved communities where transportation is a scarce resource and vast
wealth gap across racial groups exists. We partition the service region into zones, and each zone
represents a community. Shared vehicles are located a priori in some designated parking spaces in
each zone. We classify two types of customers: Type 1 customers who want shared cars for private
use and Type 2 customers who have ridesharing demand but cannot drive cars themselves. We aim
to build a self-sustained CRS system that encourages Type 1 customers “serve” Type 2 customers
at their capability to gain discount for renting cars. To implement the system, we develop an
online reservation system that enables Type 1 customers to reserve cars by providing their car
rental information along with available time windows for serving others, and Type 2 customers to
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input their ridesharing requests with origin/destination of their trips and time windows for pick-up.
Our goal is to maximize the fulfillment of two types of demands, while self-covering the operational
cost by daily revenue.

We only provide round-trip carsharing services to Type I customers since a one-way trip demand
can be considered as a ridesharing service. We assume that demands arise at discrete time periods
over a finite horizon. In each period, the unfulfilled demand is immediately lost. We propose a
two-phase approach: in Phase I, we maximize the demand fulfillment by accepting enough Type 1
drivers to serve Type 2 users while maintaining the cost self-sustainability of the system; in Phase II,
we optimize routing and scheduling for both types of customers. We formulate two integer programs
for solving the problems in the two phases and will investigate decomposition-based algorithms for
improving the computational efficiency.

1.2 Contributions and Main Results

This paper focuses on developing a new CRS system targeting at underserved communities. We aim
to optimize resource pooling, supply-demand matching and shared service scheduling within and
across multiple communities. The contributions of this paper are three-fold. Firstly, we propose a
new design of sharing service system that integrate carsharing and ridesharing services. Secondly,
the classification of the two types of customers/services leads to self-sustained operations of the
system via supply-demand matching within the service region. Thirdly, the system will provide
prominent solutions to underserved communities, which are currently being left behind by sharing
service technologies despite their potential large demand.

We plan to test our approach on instances generated on surveys from underserved populations
in Detroit area. The preliminary results on randomly generated instances show the computational
efficiency of the two-phase approach. The computational time depends on the size of the fleet and
the number of service demands. The system maintains high quality of service as well as high vehicle
utilization rate.

2 Problem Formulation

We are given a fleet of vehicles K = {1, 2, . . . , |K|} for serving a set I of zones. We aim to maximize
the total number of car/ridesharing requests fulfilled while maintaining the net revenue above a
certain threshold value, S, to ensure self-sustainable operations. Let L = {1, 2, . . . , |L|} be the set
of reservations received from Type 1 users. Each l ∈ L corresponds to a tuple, (il, sl, tl, g

L
l , h

L
l ),

which indicates the zone il for picking up and returning a rental car, the time window [sl, tl] during
which a car is needed, and the time window [gLl , h

L
l ] during which the corresponding Type 1 user

can provide ridesharing service. Let J be the set of ridesharing demands from Type 2 (non-driver)
users. Each j ∈ J corresponds to a tuple (oj , dj , ej , g

J
j , h

J
j ), where oj and dj represent the trip’s

origin and destination, respectively, ej is the total time needed (including driving time from oj to
dj , time of loading passengers or goods, etc.), and [gJj , h

J
j ] is the time window for picking up the

corresponding Type 2 user at oj . We describe the cost parameter settings for fulfilling demands in
L and J later when we describe the modeling details for Phase I and Phase II problems.

2.1 Phase I: Carsharing Planning and Operations

For a CRS system, we determine initial locations of |K| cars and construct a spatial-temporal
network [1], G = (N,A), to model car movement over T periods to operate the CRS system. Each
node nit ∈ N represents a zone i ∈ I at period t ∈ {0, 1, . . . , T}. Let the arc set A = AR ∪ Aidle,
where AR = {(nilsl , niltl) : l ∈ L} and Aidle = {(nit, nit+1) : i ∈ I, t ∈ {0, 1, . . . , T − 1}}, conveying
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arc flows that represent decisions of letting a Type 1 user l ∈ L rent a car from zone il during
the time [sl, tl] and letting car(s) sit idle at zone i ∈ I from period t to period t + 1, for all
t = 1, . . . , T − 1, respectively.

For each Type 1 demand l ∈ L, we charge rLl per period of car use (which depend on the
pick-up location and time window to use the car). We also pay the user pl for each time period
he/she serves others. For each Type 2 request j ∈ J , we charge rJj per period dependent on the
origin, destination, and time window needing the service. A car in use will incur a service cost cser

(including maintainace, insurance, and other costs) per period to the system oprator and will incur
an idle cost cidlei (including necessary costs in cser and parking cost) if it sits idle at zone i ∈ I.
Let fa and ua represent the net revenue of generating one unit of flow on arc a ∈ A and the arc
capacity, respectively. For each al ∈ AR, we have fal = (tl−sl)(rLl −cser)−pl(hLl −gLl ) and ual = 1.
For each idle arc a = (nit, nit+1) ∈ Aidle, fa = −cidlei and ua = |K|.

We define integer decision vector x = (xi, i ∈ I)T where xi is the number of cars intially located
at zone i ∈ I, binary decision vector y = (yka , a ∈ A, k ∈ K)T where yka = 1 indicates that vehicle
k flows on arc a, and 0 otherwise, and binary decision vector z = (zjl, j ∈ J, l ∈ L)T where zjl = 1
indicates that Type 2 demand j ∈ J is served by Type 1 demand l ∈ L, and 0 otherwise. We
define a binary parameter vector w = (wjl, j ∈ J, l ∈ L)T , where wjl = 1 if ridesharing j ∈ J can

be served by carsharing trip l ∈ L and 0 otherwise. We have wjl = 1 if |[gJj , hJj ] ∩ [gLl , h
L
l ]| ≥ ej ,

meaning that Type 2 user’s request j ∈ J can be performed within the time window specified by
Type 1 user l ∈ L to serve others. We let δ+(nit), δ

−(nit) be the set of arcs to which node nit is
their tail and head, respectively, and formulate an integer program P1 as follows.

(P1) max
∑
al∈AR

∑
k∈K

ykal +
∑
j∈J

∑
l∈L

zjl (1)

s.t.
∑
i∈I

xi ≤ |K| (2)∑
k∈K

∑
a∈A

fay
k
a +

∑
j∈J

rJj
∑
l∈L

ejzjl ≥ S (3)

∑
k∈K

∑
a∈δ+(ni0)

yka ≤ xi ∀i ∈ I (4)

∑
i∈I

∑
a∈δ+(nit)

yka −
∑
i∈I

∑
a∈δ−(nit)

yka =


1 if t = 0

0 if t ∈ {1, . . . , T − 1}
−1 if t = T

k ∈ K, (5)

∑
k∈K

yka ≤ ua ∀a ∈ A (6)∑
j∈J

zjlej ≤
∑
k∈K

ykal(h
L
l − gLl ) ∀l ∈ L (7)

zjl ≤ wjl ∀j ∈ J, ∀l ∈ L (8)∑
l∈L

zjl ≤ 1 ∀j ∈ J (9)

x ∈ Z|I|+ , y ∈ {0, 1}|A|×|K|, z ∈ {0, 1}|J|×|L|, (10)

where the objective (1) maximizes the total number of sharing service fulfillment; constraint (2)
limits the number of available cars for the system; constraint (3) ensures that the system achieve
the minimum daily revenue requirement; constraints (4) enforce that the sum of outgoing flows from
node ni0 is bounded by xi for all i ∈ I; constraints (5) are flow balance constraints; constraints (6)
are the capacity constraints for each arc; constraints (7) ensure that the accepted carsharing requests
can potentiallly provide sufficient total time to serve accepted ridesharing requests; constraints (8)
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ensure that zjl = 1 only if carsharing trip l can serve ridesharing demand j; constraint (9) ensures
that each ridesharing request will be served at most once.

2.2 Phase II: Ridesharing Routing and Scheduling

The solution to P1 gives the information on shared cars that are available to provide ridesharing.
Now we construct Phase II model to find the routing and scheduling decisions for both customers.

We define a network G′(V,E) where V is the node set and E is the edge set. Let V = V0∪V1∪V2
where V0 = V1 = {il : l ∈ L} is the location set of the depots and V2 = {oj , dj : j ∈ J} is the
location set of Type 2 users. Let E = E0 ∪ E1 ∪ E2 ∪ E3 where E0 = {(il, oj) : il ∈ V0, oj ∈ V2}
contains edges connecting depots to ridesharing locations, E1 = {(oj , dj), j ∈ J} contains edge
connecting the origin and destination of ridesharing service, E2 = {(dj , ov) : j 6= v ∈ V2} contains
edges connecting different ridesharing locations, and E3 = {(dj , il) : dj ∈ V2, il ∈ V1} contains
edges connecting ridesharing locations back to depots. We use cuv as the traveling time between
two nodes such that (u, v) ∈ E.

Define binary decision vector α = (αl
uv, (u, v) ∈ E, l ∈ L)T where αl

uv = 1 indicates that
carsharing service l travels along arc (u, v), and 0 otherwise, binary vector β = (βj , j ∈ J)T where
βj = 1 indicates that the ridesharing service j ∈ J gets served, and 0 otherwise, continuous decision
vector γ = (γv, v ∈ V )T where γv is the time that location v gets visited. We formulate ridesharing
scheduling problem as a vehicle routing problem with time windows and multiple depots [2]:

(P2) maximize
∑
j∈J

βj (11)

subject to
∑
j∈J

rJj βj ≥
∑
l∈L

pl(h
L
l − gLl ) (12)

∑
l∈L

∑
u:(u,oj)∈E1∪E2

αluoj ≤ βj ∀oj ∈ V2, (13)

∑
v:(il,v)∈E0

αlilv ≤ 1 ∀l ∈ L (14)

∑
u:(u,il)∈E3

αluil ≤ 1 ∀l ∈ L, (15)

∑
v:(u,v)∈E

αluv −
∑

v:(v,u)∈E

αlvu = 0 ∀u ∈ V2, ∀l ∈ L, (16)

γil + cilv − T (1− αlilv) ≤ γv ∀(il, v) ∈ E0, (17)

γoj + ej + cdjv − T (1−
∑
l∈L

αldjv) ≤ γv ∀(dj , v) ∈ E2 ∪ E3, (18)

gLl ≤ γil ≤ hLl ∀il ∈ V0 ∪ V1, (19)

gJj ≤ γoj ≤ hJj ∀oj ∈ V2, (20)

αluv ∈ {0, 1} ∀(u, v) ∈ E, ∀l ∈ L, (21)

βj ∈ {0, 1} ∀j ∈ J, (22)

where the objective (11) maximizes the total number of ridesharing services we fulfill; constraint
(12) ensures that the revenue we receive from fulfilling Type 2 demand is sufficient to cover the
payment to Type 1 drivers; constraints (13) ensure that βj = 1 if the location oj is visited by a
driver; (14)–(15) specify the origin and destination of the flow for each driver with demand l ∈ L;
constraints (16) are the flow balance constraints; constraints (17)–(20) ensure that the arrival time
at each location satisfying corresponding time window. Moreover, constraints (17)-(18) also serve
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as subtour elimination constraints by enforcing the arrival time at location v to be greater than the
arrival time at location u plus traveling and service time if a driver travels from u to v directly.

3 Numerical Results

We test our model on randomly generated instances to demonstrate the preliminary computational
results for our approach. We generate 6 instances with various sizes of fleet and different amount
of demands in a system with |I| = 5 and T = 8. The carsharing demands are uniformly distributed
in each zone and the rental time windows are randomly generated with length at most 4 periods.
We generate the location of carsharing stations and ridesharing demands on a [0, 1]2 square and
set the traveling time between two locations as their Euclidean distance. The time windows and
service time for ridesharing demands are also randomly generated. The price/cost parameters are
set according to real practice from Zipcar operations in Detroit area1. The numerical experiments
are conducted on a desktop with i7-6700K CPU at 4.00GHz and 32GB memory. We use Gurobi
7.0.1 as the integer programming solver for P1 and P2. We report the computational time and the
quality of service in Table 1 with different fleet sizes (|K|), various amount of carsharing demands
(|L|) and ridesharing demands (|J |).

Table 1: Numerical Results for Proposed Model

|K| |L| |J | Phase I Time(s) Phase II Time(s) Fulfilled Carsharing Fulfilled Ridesharing

Instance 1 20 20 40 0.03 10.39 19 40
Instance 2 20 40 40 0.01 68.62 40 40
Instance 3 20 40 80 24.81 832.03 40 80
Instance 4 30 30 60 0.25 115.84 30 60
Instance 5 30 60 60 0.04 2015.63 57 60
Instance 6 30 60 120 276.46 1592.48 59 120

The results show that we can use general commercial optimization tool to solve the models
efficiently for small instances. However, with an increasing number of demands, the solution time
for Phase II model grows fast. Results also show that the proposed CRS system has high quality
of service for providing sharing services. Our preliminary results indicate that the size of fleet
is the key factor that causes demand loss for carsharing in Phase I. According to the solutions,
for the carsharing demands that have been rejected, they in general offer narrower time windows
for providing ridesharing. In addition, we notice that the ridesharing demands can be effectively
fulfilled in the test instances.

For the next step, we plan to demonstrate the computational results of our model by test-
ing instances generated on surveys from underserved populations in Detroit area and investigate
decomposition-based algorithms to improve the computational efficiency.

References
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carshare systems under demand uncertainty. Working paper.
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We study a multi-period multi-commodity pickup and delivery problem with a heterogeneous fleet inspired

by the short-term planning of maintenance activities for offshore operations. In this Multi-Period Service

Planning and Routing Problem, each maintenance service requires spare parts as well as different types of

servicemen. This leads to a mix of one-to-one and many-to-many pickup and delivery structures for the

construction of the daily vehicle routes. Travel times and costs are period dependent to model a wide variety

of application dependent characteristics in a unified way. We propose a branch-and-price-and-cut algorithm

to solve this problem. It relies on efficiently solving a new variant of the Resource Constrained Elementary

Shortest Path Problem. Preliminary experiments show that the algorithm easily finds solutions to instances

with 25 maintenance services, demanding three types of servicemen, over a five-period planning horizon.

Key words : Pickup and Delivery Problem, Multi-commodity, Multi-Period, Branch-and-Price-and-Cut,

Maintenance

1. Introduction

The short term planning of maintenance services that take place at geographically scattered locations

is a frequently encountered decision problem in maintenance service logistics. In the Multi-Period

Service Planning and Routing Problem (MSPRP), we consider a maintenance service provider for

offshore operations that needs to perform such a set of geographically scattered services {1, . . . , n},

which all need to be planned over a time horizon {1, . . . , T}. A service is started if the right amount of

spare parts and the right number of differently skilled servicemen are delivered at the service location.

After completion of the service, the servicemen need to be picked up again to be delivered at their

next-scheduled services. These delivery and pickup tasks are performed by K heterogeneous vehicles,

capacitated in the total weight of the spare parts and the number of serviceman. Every service can

be started and completed within a single day, and we assume that they are planned in such a way.

Vehicles are allowed to continue with the remaining pickup/delivery tasks following the delivery of the

servicemen at a service location. However, each vehicle is responsible for the pickup of servicemen if

it has done the corresponding delivery. They should thereby respect service times and the designated

maximum daily working hours.

We model the MSPRP as a pickup and delivery problem: We aim to develop cost-minimizing routes

such that spare parts and servicemen are picked up and delivered between service locations, for each

vehicle in each period, assuring the performance of all maintenance services. To encompass restrictions

of offshore operations, we let travel times and costs be vehicle and period dependent, allowing the
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modelling of a wide variety of application dependent characteristics in a unified way. For example, the

different cost structures of corrective and preventive maintenance services, as well as the influence of

weather conditions on the travel times, can be characterized in this way.

We present an efficient branch-and-price-and-cut algorithm for solving the MSPRP. It relies on

efficiently solving pricing problems that are obtained by decomposing the problem for each vehicle

and period. The pricing problems are a new variant of the Elementary Resource Constrained Shortest

Path Problem (ERCSPP). The ERCSPP is solved by an algorithm that first provides lower bounds

of partial paths, and second, uses that information in a depth first search to prune partial paths,

in the line with the approach of Lozano, Duque, and Medaglia (2015). We show its applicability by

applying it to a practically inspired case constructed for the maintenance service logistics at offshore

wind farms (see, e.g., Irawan et al. (2016)).

The MSPRP has distinguishing characteristics that makes it a novel problem to study. First, it mixes

a one-to-one pickup and delivery structure with a many-to-many pickup and delivery structure, see

Berbeglia et al. (2007) for an overview of these structures. A one-to-one delivery and pickup structure

(see, e.g., Ropke and Cordeau (2009)) exists between nodes that represent the start and completion of

a service, respectively. The many-to-many pickup and delivery structure (see, e.g., Hernández-Pérez

and Salazar-González (2014)) exists between multiple services; servicemen of a completed service can

be used to start other services. Second, respecting the service times yield so-called delayed precedence

constraints between the delivery and pickup of servicemen, i.e., time windows at the pickup nodes

depend on the arrival time at the corresponding delivery nodes. Third, the MSPRP is essentially a

multi-commodity pickup and delivery problem in a multiple vehicle setting, for which no sophisticated

branch and bound algorithms have been developed so far.

The remainder of this abstract is as follows. The next section introduces the mathematical model

used to solve the MSPRP. We conclude with some promising preliminary experiments in Section 3.

2. Model description

Let G= (N,A) be a directed graph with a set of nodes N and a set of arcs A. The node set N consists

of delivery nodes Nd = {1, . . . , n}, pickup nodes Np = {n+ 1, . . .2n}, and the origin and destination

depot {0,2n+ 1}. Every delivery node i has a corresponding pickup node i+ n, who represent the

start and the completion of service i, respectively. Each service demands known amounts of L different

types of servicemen. The number of available servicemen of type ` in period T equals Q̃`t. A vehicle

k ∈K has spare parts capacity Q̄1 and servicemen capacity Q̄2.

We propose a set covering formulation to solve this problem. First, let R be the set of all feasible

routes that can be constructed in the MSPRP. Due to the heterogeneity of vehicles and discrepancies

between periods, a route’s costs and feasibility may differ between vehicles and periods. We therefore

let R=∪k∈K,t∈TRkt, where Rkt are the sets of feasible routes for vehicle k in period t. For some route

r ∈ Rkt, let yktr be a binary decision variable that equals 1 if route r is chosen and 0 otherwise. In

addition, let cktr be the corresponding costs , βktr
i be the number of times node i∈Nd ∪Np is visited,



Schrotenboer, Ursavas, and Vis: The Multi-Period Service Planning and Routing Problem
3

and γktr
` be the number of commodities (i.e, the number of servicemen types) of type `∈L needed in

route r ∈Rkt

A set covering formulation is then given by:

min
∑
t∈T

∑
k∈K

∑
r∈Rkt

cktr y
kt
r (1)

S.t.
∑
t∈T

∑
k∈K

∑
r∈Rkt

yktr β
ktr
i ≥ 1 ∀ i∈Nd (2)∑

r∈Rkt

yktr ≤ 1 ∀ k ∈K, t∈ T (3)∑
k∈K

∑
r∈Rkt

yktr γ
ktr
` ≤ Q̃lt ∀ t∈ T , `∈L (4)

yktr ∈ {0,1} ∀ k ∈K, t∈ T , r ∈Rkt (5)

The objective (1) calculates the costs for using the selected routes from each subset Rkt. Equation

(2) ensures that every node is visited at least once. Equation (3) ensures that every vehicle in every

period is used at most once, which is necessary due to heterogeneity of vehicles and discrepancies

between periods. Equation (4) ensures that there are enough commodities available at the depot. We

will refer to the model described by equations (1) - (5) as the Integer Programming Master (IPM)

problem.

To find the LP relaxation of (IPM), we consider restricted route sets Rkt ⊂Rkt. We iteratively solve

the LP relaxation of (IPM) subject to Rkt and generate paths for each Rkt by solving the (k, t)-pricing

problem. The LP relaxation of (IPM) is found if no path of negative reduced cost is found for each

(k, t)-pricing problem.

To formulate the (k, t)-pricing problems, let µi, λkt, and π`t be dual variables corresponding to

constraints (2) - (4), respectively. Let dktij be the costs of traversing arc (i, j) in some (k, t)-pricing

problem. We define

dktij =

{
cktij −µi if j ∈Nd,
cktij otherwise.

Similarly, let d̃`t = c̃`t−π`t. Then the (k, t)-pricing problems are given by

min
r∈Rkt

 ∑
(i,j)∈A

dktij r
kt
ij +

∑
`∈L

d̃`tr`t−λkt

 ,∀ k ∈K, t∈ T ,

where rktij = 1 if arc (i, j) is used by path r ∈Rkt, and r0` are the number of demanded servicemen of

type `∈L in path r ∈Rkt. The (k, t)-pricing problems are new variants of the Resource Constrained

Elementary Shortest Path Problem, namely, it comprises a multi commodity mixed pickup and deliv-

ery structure combined with time based precedence constraints. We developed an efficient algorithm

to solve the pricing problems. It first provides lower bounds to partial paths, and afterwards, this

information is used in a depth first search to efficiently prune partial paths. It is a rigorously adapted

variant of the algorithm by Lozano, Duque, and Medaglia (2015), i.e., a similar approach for solving

the pricing problems arising in a vehicle routing problem with time windows.
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Table 1 Characteristics of the vehicles used in the instance sets

vehicle Q̄1 Q̄2 relative fuel cost relative travel speed

1 600 12 1 1
2 1000 16 1.2 0.8
3 1000 12 1.1 0.9

To strengthen the LP relaxations, valid inequalities are added after solving the pricing problems at

a branch and bound node. We adapted 2-path inequalities, fork inequalities and capacity inequalities

(see, e.g., Ropke, Cordeau, and Laporte (2007)) such that they are valid for the MSPRP.

Branching is done in a three-stage approach. First, we branch on the number of vehicles (Ropke and

Cordeau 2009), i.e., we consider the number of outgoing edges from the depot in the LP relaxation.

If we cannot branch by this rule, i.e., if the number of vehicles is integer, we continue with the

second branching rule. It sums the use of an edge over the vehicle and period dimension. If no such

summations are fractional, we consider branching on individual edges of the underlying graph G.

This three-stage approach outperforms branching on the set partition variable yktr , since that leads to

unbalanced branch and bound trees (Irnich and Desaulniers 2005).

3. Preliminary Results

In this section, we study a practically inspired case of maintenance service logistics for offshore wind

farms, first introduced by Dai, St̊alhane, and Utne (2015). Recently, Irawan et al. (2016) propose

an exact solution method based on a set partitioning formulation and a total enumeration of all

possible routes for a multi-depot setting. Their approach inherently causes memory problems for larger

problem sizes, although the inclusion of multiple depots causes a more restricted solution space, i.e.,

services are not allowed to be served from all depots and only services within a single wind farm (out

of three) could be visited by a single route. The largest instances they proposed solutions for (without

guaranteed optimality) consists of routes with at most 12 services, i.e., 12 turbines per wind farm.

We created two sets of new instances to test the efficiency of the branch-and-price-and-cut algorithm.

We implemented it using the framework for constraint programming SCIP 3.2.1 (Gamrath et al. 2016)

in combination with CPLEX 12.6.1 as an LP-solver. The overall program is coded in C++. Daily

working hours are randomly drawn between 8 and 12 hours, spare parts weights are randomly drawn

between 200 and 400 kg. Three different types of servicemen are included, and the demands for these

types of servicemen are randomly between 1 and 2. The number of available servicemen are per period

per type randomly drawn between 4 and 6. The vehicles characteristics are given in Table 1. The first

two vehicles are used in instance set 1, and all vehicles are included in instance set 2. The results are

presented in Table 2. As can be seen, even with a time limit of 120 seconds on the computation time,

instances up to 25 maintenance services can easily be solved.

4. Conclusion

In this paper, we researched a pickup and delivery problem arising in offshore maintenance operations.

We proposed a branch-and-price-and-cut algorithm based on a set partition formulation decomposed

for every vehicle and period. Its efficiency is shown by solving two new sets of instances.
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Table 2 Results of preliminary experiments

Set Instance n K T LB UB Gap (%) time (s)

1 1 20 2 5 40797.32 40797.32 0.00 3.36
2 20 2 5 38700.80 38717.07 0.04 120.00
3 20 2 5 34253.41 34253.41 0.00 26.57
4 20 2 5 41249.51 41249.51 0.00 36.51
5 20 2 5 36819.32 36819.32 0.00 8.10
6 25 2 5 50394.84 50730.17 0.67 120.00
7 25 2 5 47364.08 47950.53 1.24 120.00
8 25 2 5 47554.99 47554.99 0.00 55.04
9 25 2 5 54591.77 54834.14 0.44 120.00

10 25 2 5 44350.86 44350.86 0.00 29.30

2 1 20 3 5 37545.88 37591.17 0.12 120.00
2 20 3 5 32211.08 32211.08 0.00 8.02
3 20 3 5 30694.82 30694.82 0.00 24.63
4 20 3 5 32907.11 32907.11 0.00 11.00
5 20 3 5 39882.72 39882.72 0.00 70.08
6 25 3 5 45135.46 45264.21 0.29 120.00
7 25 3 5 43730.12 44404.96 1.54 120.00
8 25 3 5 42960.33 42960.33 0.00 47.91
9 25 3 5 40772.26 40772.26 0.00 37.26

10 25 3 5 38274.49 38529.93 0.67 120.00
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Covering Tour Problem with an Application to

School Bus Routing: Analysis of Single Vehicle

Tours on a Grid

January 5, 2017

1 Introduction

In the face of critical budget cuts, many school districts are looking to reduce transportation expen-
ditures. This paper presents initial work on the School Bus Routing Problem (SBRP), motivated
by a partnership between Evanston/Skokie District 65 (D65), a pre-K - 8 public school district
north of Chicago, and Northwestern University focused on bus transportation. The SBRP has
been studied by the operations research community for fifty years, identifying creative routing and
scheduling approaches for school districts. The SBRP itself is a composite of five decision subprob-
lems: data preparation, bus stop selection, bus route generation, school bell time adjustment, and
route scheduling. In our work, we take a new approach to the joint problem of bus stop selection
and bus route generation, exploiting the underlying grid-like structure of the road network present
in the D65 service region to obtain robust, easy-to-implement solutions.

An efficient and sustainable mechanism for route design is crucial in the SBRP; such a mecha-
nism would provide benefit in many aspects, including saving money for schools/organizations and
reducing walking time for students. In many cases of SBRP (especially in urban areas), students
are not picked up at their homes, but rather are assigned to a bus stop such that the walking
distance for each student is no more than a predetermined constant. It is natural to link bus stop
selection and bus route generation. We model the joint problem as a covering tour problem (CTP).
The CTP is a variant of the traveling salesman problem (TSP). The major difference between these
two problems is that we are not required to visit every node directly in CTP. Instead, we identify
the least cost tour of a subset of the nodes such that every node not on the tour is within some
predetermined distance of a node that is on the tour.

In developing solution approaches for the CTP, we exploit characteristics of urban bus routing,
most notably the underlying grid structure. A grid graph is a graph whose nodes correspond
to integer points in the plane, x-coordinate being in the range 1 to m, y-coordinate in 1 to
n. Two nodes are connected if they are at distance 1. We show in our analysis that the grid
structure greatly reduces the complexity of the problem. We begin our analysis in this paper
with a stylized setting of one bus serving students located uniformly on a complete grid. In the
presentation, we will introduce our approach to the CTP and its applications to SBRP. In this
abstract, we summarize key findings for the simple setting that will inform solution approaches for
more general settings. The presentation will discuss both the simple settings and generalizations
for more complex settings.
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2 Literature review

The CTP, first introduced by Current (1981), is NP-hard as it reduces to TSP when the covering
distance goes to 0. The problem was first formulated as an integer linear program in Current and
Schilling (1989). Gendreau et al. (1997) provide polyhedral study for this problem as well as a
branch-and-cut algorithm. The CTP can also be formulated as a generalized traveling salesman
problem (GTSP) (see Fischetti et al. (1997)): given several sets of nodes, the GTSP seeks to
determine a shortest tour passing at least once through each set. Recent CTP work continues
the design of heuristics for both CTP and multi-vehicle CTP, see Jozefowiez (2014), Murakami
(2014) and Leticia Vargas et al. (2015). Different from these papers, our approach is to impose
structure on the underlying graph and develop solution methods with provable bounds based on
the structure.

Some of the most fundamental combinatorial optimization problems are well studied on grid
graphs. Itai et al. (1982) proved that the Hamiltonian problem is NP-hard on general grid graphs,
but can be solved in polynomial time on graph without holes (Umans and Lenhart (1997)). Recent
advances in the TSP also indicate potential benefits of working on grid. Arkin et al. (2000) provide
a polynomial algorithm for TSP on simple grid graph with approximation ratio 6

5 . Gharan et al.
(2011) provide a 1.5 − ε polynomial approximation algorithm for graph TSP, which is the first
result that beat Christofides heuristic with 1.5 approximation ratio. This ratio was later improved
to 1.4 by Sebo and Vygen (2012). Our work is a continuation of this stream of work to use grid
characteristics for complex problems.

3 Problem setting

Consider a m by n unit grid with N = mn nodes. Given k ∈ N, we say node A covers node B if
the distance between A and B is no more than k. The covering tour problem on grid can be stated
as follows: for given parameters m,n, k, find a minimum cost tour such that each node in the grid
graph is covered by at least one node in the tour. Here we use l1 norm to measure distance, which
is the shortest path length between two nodes if we are only allowed to travel along edges in the
grid graph. We consider two costs motivated by our school bus routing problem: tour cost, which
is a function of tour length; and fixed cost, which is a function of the number open bus stops, since
each stop requires a fixed stopping time. In what follows, we first minimize each cost individually
and then use these results to analyze the trade-off when both costs are considered.

3.0.1 Main results: 1 school, 1 bus, complete grid

In the stylized setting of a single vehicle serving a single school on a complete grid, we have
established the following fundamental results that will be used in more general settings. We solve
the following decision making problem in different settings: given a m by n grid and covering
radius k, for parameters L, T , determine if there exist a covering tour such that the tour length is
L and the number of stops is T . We present the following main results of this initial study.

Theorem 1 (Minimum stop count). The minimum number of stops in a covering tour is
T ∗ = N

2k2+2k+1 + O(m).

To achieve the minimum fixed cost (minimum stop count), open stops are arranged on the grid
such that each open stop covers a diamond region of (2k2 + 2k + 1) nodes. In this manner, this
diamond region forms a tessellation on Z2 so that N

2k2+2k+1 + O(m) stops are needed to cover the
grid. The O(m) stops are used to cover the boundary of the grid.

Theorem 2 (Minimum tour length). The minimum length of a covering tour is L∗ = N
2k+1 +

O(m).
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Notably, these two minima can often not be achieved simultaneously.

Theorem 3 (Multiple objective trade-off). In the multi-objective setting considering both
tour length and fixed stop cost, one can not achieve L∗ and T ∗ simultaneously. Moreover, the two
costs satisfy

N ≤ T f̂(
L

T
)

where f̂ is the piecewise-linear function associated with the following discrete function f :
f(1) = 2k + 1, f(2k + 1) = 2k2 + 2k + 1;
f(d) = d(2k + 1− d

2 ) for d = 2, 4, · · · , 2k;

f(d) = d(2k + 1− d
2 )− 1

2 for d = 3, 5, · · · , 2k − 1.

For minimum tour cost and the multi-objective case, we point out that the average distance
between consecutive stops L

T quantifies the trade-off between tour cost and fixed cost. In general,

small L
T leads to lower tour cost and large L

T helps minimize fixed cost. Below is the sketch of
proof for above theorems.

Let F1 − F2 − · · · − FT − F1 be a covering tour and di is the distance between Fi and Fi+1

(FT+1 = F1), then the total tour length is

L =

T∑
i=1

di.

Let Si denote the set of nodes covered by Fi, since all nodes are covered, then

N ≤ | ∪Ti=1 Si| ≤
T∑

i=1

|Si+1 − Si| ≤
T∑

i=1

f(di).

From the concavity of f we have

N ≤
T∑

i=1

|Si+1 − Si| ≤ T f̂(
L

T
).

Note that f̂ is a concave piecewise-linear function and can be reformulated as the minimum
of several linear functions; i.e. f̂(d) = mini{aid + bi}. Hence, N ≤ T f̂(L

T ) is equivalent to
N ≤ mini{aiL + biT}, the boundary of which is a piecewise-linear convex function.

The turning points of the boundary are:

T (d) =
N

f(d)
, L(d) =

Nd

f(d)

where d = 1, 2, 4, 6, · · · , 2k − 2, 2k, 2k + 1.

Theorem 4 (Tightness of trade-off inequality). The inequality in Theorem 3 characterizes
the boundary of all feasible pairs of (L, T ) almost exactly.

Remark: Notice that Theorem 3 implies Theorem 2 if we set covering radius k = 0. We also
note that for general grid graphs with N nodes, Theorems 1 and 2 provide lower bounds for tour
cost and fixed cost and the inequality in Theorem 3 still holds.

To show the tightness result, we first construct zigzag tours with T = T (d) + O(m) and
L = L(d)+O(m), where d = 1, 2, 4, · · · , 2k−2, 2k, 2k+1. Then we reach all other pairs of (L, T ) by
combining two of these covers. Figure 1 shows the tightness result when m = n = 2000, k = 10. The
red polyline represents the trade-off constraint while the blue points are data from constructions.
The small gap between theoretical bound and real data is of order O(m), which confirms that the
theoretical bound is indeed tight.
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Figure 1: Tightness results

4 Conclusion and future work

These results for a stylized setting provide insights in the trade-off between tour cost and fixed
cost, and lay the foundation for our analysis of the SBRP for D65. Based on simplicity of these
preliminary results and the structure of the true D65 road network, our future work will continue
to generalize the problem setting. This work joins a growing body of work that looks to more
efficiently solve real life routing problems by exploiting the underlying well-structured graph.
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Coordinated Delivery to Nanostores in Megacities

Ruidian Songa∗, Lei Zhaoa†, Jan C. Fransoob‡, Tom Van Woenselb§

aDepartment of Industrial Engineering, Tsinghua University, Beijing, 100084, China
bSchool of Industrial Engineering, Eindhoven University of Technology, Eindhoven, Netherlands

In developing economies, especially in Asia and Latin America, the major consumer goods retail channel

consists of thousands of small traditional “mom-and-pop” retail stores. We refer to these small, family-

owned, and independently operated retail stores as nanostores. It is estimated that there are more than

30,000 nanostores in the core area of Beijing, China. In Mexico, Coca-Cola supplies 1.2 million points of

sale (Blanco and Fransoo, 2013).

To better understand these nanostores, we interviewed 50 store owners in Beijing from 2012 to 2014. Unlike

modern channel retailers such as chain hyper/supermarkets and convenience stores, nanostores are normally

not equipped with retail management information systems and are operated mostly by the store owners with

experiences (or “heuristics”). Most nanostores are located in and serve a residential neighborhood. They

customize their assortments to adapt to the neighborhood and the demands are relatively stable.

They may (visually) review their inventory routinely (e.g., daily) or when a customer shops for a particular

item. When the inventory drops below a certain threshold (“safety stock”), they place an order to the

wholesaler (or the manufacturer with direct distribution channel). The order quantity has to be multiple of

certain batch size and constrained by the available shelf space.

The deliveries vary from half an hour to two days. Normally, store owners are not very strict on delivery

time, unless a late delivery causes out-of-stock or lost-sale in the store. Sometimes, the wholesaler (or man-

ufacturer) send pre-sales representatives to visit the nanostores, checking the presentation of their products,

introducing new products, and convincing/helping the store owners to place a replenishment order.

Constrained by the shelf space and available cash or credit, the store owners replenish their inventories with

small order sizes and high order frequencies. Consequently, the replenishment to the nanostores results in a

large number of uncoordinated deliveries to these stores, which poses serious challenges in the corresponding

logistics management.

In this paper, we study, from the wholesaler’s (or manufacturer’s) perspective, how to coordinate the delivery

to the nanostores to reduce the logistics cost, while maintaining service quality to these nanostores. We refer

to this as the Coordinated Delivery Problem (CDP). We study two versions of the CDP. In the Passive CDP,

the wholesaler can delivery to a nanostore only after the store owner places an order, while in the Proactive

CDP, the wholesaler is allowed to deliver before the store owner place an order, e.g., via pre-sales effort.
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Specifically in our paper, a wholesaler serves a set of N nanostores over a finite (cyclic) planning horizon T

(e.g., a week). Each nanostore faces deterministic demand of a single product, which can be store specific

and time varying within T . The inventory policy of nanostore i can be approximated as an (si, Si, nB)

policy, where si represents the reorder point, Si the upper limit of replenishment quantity, B the batch size,

and n the number of batches in the order. Note that while si and Si are store specific, the batch size B is

common to all nanostores. At a reorder point, nanostore i orders as many batches as possible under the Si.

The wholesaler has a single vehicle with capacity Q. The vehicle can travel multiple trips to serve the

nanostores within the duration of each period (e.g., a day). The wholesaler can schedule the delivery to

the nanostores to coordinate and consolidate the orders to save delivery cost. However, unmet demand at a

nanostore will result in unsatisfactory of the store owner to the wholesaler’s delivery service, represented as

a penalty to the wholesaler. Further, postponed delivery (in the passive and proactive CDP) and advance

delivery (in the proactive CDP) are also subject to penalty cost. The penalty for advance delivery in the

proactive CDP represents the pre-sales effort to convince the store owner to place an order earlier than the

reorder point. Besides, to ensure the cyclic pattern of the planning horizon, we also penalize the deviation

from the target inventory level at each nanostore. We extend the two-commodity flow formulation (Baldacci

et al., 2004) to multiple periods to model the CDP as a mixed integer program (MIP).

Our work falls into the stream of literature on Inventory Routing Problem (IRP), first introduced in gas

industrial distribution by Bell et al. (1983). We refer interested readers to Bertazzi and Speranza (2013) and

Coelho et al. (2014) for comprehensive reviews. In our paper, we study the (s, S, nB) policy at nanostores,

with batch size consideration of replenishment orders. Besides, stockouts or lost sales at nanostores are

allowed but penalized to the wholesaler, and both postponed and advance deliveries to nanostores are also

penalized.

We plan for the coordinated delivery to nanostores within a finite time horizon T . Therefore, CDP is also

closely related to the Periodic Vehicle Routing Problem (PVRP), first introduced by Beltrami and Bodin

(1974). In PVRP, customers (e.g., grocery stores, garbage stations) require one or multiple visits within

a (cyclic) planning horizon (e.g., a week) and there are a set of feasible visit options (delivery schemes,

or day-combinations, e.g., {Monday, Wednesday, Friday} and {Tuesday, Thursday, Saturday}) for each

customer. The typical objective is to assign each customer a feasible delivery scheme to minimize the total

travel distance in the planning horizon. A recent review on PVRP is by Campbell and Wilson (2014).

Conventionally in PVRP, each customer has a specific set of delivery schemes to select, whereas in CDP, the

delivery pattern to each nanostore is influenced by both the nanostore’s inventory policy and the wholesaler’s

delivery decisions. Furthermore, in PVRP, the delivery quantity of each customer is assumed to be constant,

and stockout is not allowed, while in CDP, the reorder (thus delivery) quantity may vary and stockout is

allowed and penalized.

As for the solution method, while a few researchers study exact methods (Archetti et al., 2007; Baldacci et al.,

2011; Coelho and Laporte, 2013), most resort to (meta-)heuristic approaches, such as tabu search (Cordeau

et al., 1997; Alonso et al., 2008), a clustering heuristic for the first phase and insertion heuristic for the second

phase (Campbell and Savelsbergh, 2004; Laganà et al., 2015), genetic algorithm (Vidal et al., 2012; Park

et al., 2016), a hybrid heuristic combining tabu search ingredients and mixed integer programming models

(Archetti et al., 2012), an integer-programming based heuristic for the first phase and a record-to-record

travel algorithm for the second phase (Gulczynski et al., 2011). The solution approach developed in this

paper includes two phases and a mixed integer programming is solved in the first phase, which is inspired

by Campbell and Savelsbergh (2004), Gulczynski et al. (2011), and Laganà et al. (2015).
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The contributions of this paper are three-fold. First, we propose the coordinated delivery problem (CDP) to

nanostores and study two versions (passive and proactive) of coordination. CDP enriches the IRP and PVRP

literature with several new features. Second, we develop an efficient integer programming based heuristic

method, inspired by Gulczynski et al. (2011), to solve the CDP instances with realistic sizes. Last, we design

and perform extensive numerical experiments to study the efficiency of the solution algorithm as well as the

impact of different coordination strategies in delivery to nanostores with different inventory policies.

Keywords: Nanostores; Coordinated delivery; Inventory routing problem; Periodic vehicle

routing problem; Integer programming based heuristic
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An ALNS For A Rich Home Health Care Routing And Scheduling

Problem

Florian Grenouilleau1, Antoine Legrain1, Nadia Lahrichi1, and Louis-Martin Rousseau1

1Ecole Polytechnique de Montréal, Montréal, Canada

1 Introduction

In Canada, as in many other developed countries, home health care services are expanding. Such care
provides support or medical services to people in their own homes. It ranges from basic hygiene support to
more complex tasks such as insulin injections or wound care. Home health care increases patients’ comfort
by allowing them to stay with their families, and it reduces general health-care costs by decreasing the length
of hospital stays and the number of hospital beds needed. To ensure that their services are cost-effective,
home health care organizations need to utilize their critical resources as efficiently as possible; this topic has
been widely studied in recent years. Software companies such as Alayacare, our partner in Montreal, develop
platforms to help these organizations plan their operations.

We investigate the home health care routing and scheduling problem (HHCRSP), which determines the
assignment and routing of a set of home visits over a week. It can be described as a multi-depot periodic
vehicle routing problem with time windows, consistency, and time-dependent travel times. Moreover, the
home care context adds constraints focusing on the caregivers’ skills and the patients’ requirements (both
mandatory and optional) as well as the caregivers’ contracts. We use real business constraints provided by
Alayacare and real data (for North American clients) to develop our algorithm.

Recently, [Fikar and Hirsch, 2016] presented a review of the HHCRSP. Metaheuristics have been developed
for large problems (Bertels and Fahle [2005], Mankowska and Meisel [2014], Braekers et al. [2015]), but these
studies solve the problem for a single day and do not integrate the periodic and consistency dimensions that
stem from the patient–caregiver relationship. We propose a more comprehensive adaptive large neighborhood
search (ALNS) for the HHCRSP. The contribution of this work is twofold: we tackle a rich planning problem
that encompasses most of the real-world requirements of home health care, and we develop new ALNS
operators, fitted for the problem.

2 Problem Definition

The HHCRSP can be described as a rich vehicle routing problem with skill requirements and workload
balancing. The objective is to schedule a set of home health care visits in a defined period (a week in our
context). For each visit we must determine on which day the patient will be visited, by which caregiver, and
at what time while respecting the constraints and maximizing the satisfaction of the patients’ and caregivers’
preferences.

Home health care agencies must carefully assign their caregivers while taking into account the mandatory
and optional expertise required for each patient, the skills of the caregivers, and continuity of care. Continuity
of care is a measure of the strength of the relationship in each patient–caregiver pair; it is modeled by a
dynamic score. A high score indicates that this (patient, caregiver) pair occurs frequently. Simultaneously
with the caregiver assignments, agencies must build routes that take into account patient and caregiver
availability (indicated by time windows; the travel times consider the time-dependent aspect) and the skill
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match. In addition, they must consider the duration of each caregiver’s day (and week). Caregivers with
too little or too much work may not have job satisfaction.

3 Solution Method

The ALNS [Pisinger and Ropke, 2004] is an extension of the LNS [Shaw and Ilog, 1998] that uses the ruin
and recreate principle of Schrimpf et al. [2000]. This metaheuristic iteratively destroys part of the current
solution and then repairs it in a different way to improve its quality. A full description can be found in
[Gendreau and Potvin, 2011].

In our algorithm, the initial solution is found using a constructive greedy heuristic that tries to assign
all the visits over the week using a lowest-cost-insertion approach. Then, at each iteration, we choose
destroy and repair operators by wheel selection. The destroy operator removes q visits from the current
solution, where q is randomly chosen in an interval. We apply five destroy operators. We use the well-known
ShawRemoval,WorstRemoval and RandomRemoval defined by Pisinger and Ropke [2004]. In addition,
we introduce the ServiceRemoval operator that randomly removes all the scheduled visits of a subset of the
patients and the FlexibleAvailRemoval operator that deletes from the current schedule the patients with
the most availability (i.e., highest value of NumberOfAvailableDays

NumberOfV isitsToSchedule ).
We use six repair operators including the classical Greedy Heuristic, regret-2 and regret-3 from Pisinger

and Ropke [2004]. In addition, we introduce the RandomService operator that randomly chooses a patient
and schedules all the visits for that person. The remaining operators sort the unscheduled visits and then
call a greedy allocation method. In the PercentUnscheduled operator the sorting criterion is the percentage
of visits currently scheduled for each patient and in the PossibleRoutesWorkT ime operator, the criterion
is the level of congestion of the possible routes.

We then analyze the new schedule to determine if it improves the current or best solution. We also use a
simulated annealing mechanism [Pisinger and Ropke, 2004] as an acceptance criterion. We use an adaptive
mechanism to update the score of the operators chosen for this iteration according to the quality of the new
solution. These scores have an impact on the probabilities of the wheel selection. Finally, we apply two
termination criteria: a maximum number of iterations and a maximum computational time.

The ALNS is decomposed into segments of N iterations (where N = 2000 in our context). At the end
of each segment, we reset the scores of the operators using a uniformly distributed wheel selection to restart
the search. Moreover, we use a local search procedure for an intensification phase on the best solution found.
The local search sequentially searches for improving relocations and then focuses on part of the problem by
launching the ALNS on a reduced number of days and routes.

We compute the time-dependent travel time via the algorithm described by Ichoua et al. [2003]. This
procedure respects the FIFO logic and computes the travel time according to the start and end locations
and departure time. Moreover, we use the forward time slack principle introduced by Savelsbergh [1992]
to speed up the insertion tests made by the repair operators.

4 Computational Results

The algorithm is implemented in C++, and the tests were carried out on a Macbook Pro with a 2.5-GHz
CPU and 16 GB of memory. The process was terminated after 600 seconds or 80000 ALNS iterations. We
compared the classical routing operators and the new ones introduced for the home care context on a set of
generated instances. We solved real-world instances to validate the algorithm. According to Alayacare, the
priorities are travel time and continuity of care, so our results focus on these indicators.

4.1 Generated Instances

The goal here is to observe the impact of the created operators on the solutions. To do so, we define 4
operators classes :
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• CL : The classical operators

• SE : ServiceRemoval + RandomService operators

• FL : FlexibleAvailRemoval + PercentUnscheduled operators

• WT : PossibleRoutesWorkTime operator

We test the combinations of these operators on 2 sets P V C R of 5 instances where P is the number of
patients, V the number of visits, C the number of caregivers, and R the number of routes (number of work
days).

40 100 6 20 100 250 12 50
Scenarios Mean cost Gap Mean cost Gap Mean gap

CL 229923.08 0% 308738.43 0% 0%
CL + SE 210530.51 -8.43% 295868.13 -4.17% -6.30%
CL + FL 211552.13 -7.99% 282117.42 -8.62% -8.31%
CL + WT 220996.31 -3.88 % 283214.77 -8.27 % -6.07 %

CL + SE + FL 201685.98 -12.28 % 285484.38 -7.53 % -9.91 %
CL + SE + WT 211846.03 -7.86 % 284709.74 -7.78 % -7.82 %
CL + FL + WT 201957.96 -12.16 % 285357.29 -7.57 % -9.87 %

CL + SE + FL + WT 192496.89 -16.28 % 284722.76 -7.78 % -12.03 %
SE + FL + WT 192428.43 -16.31 % 290022.43 -6.06 % -11.18 %

Table 1: Comparison of the operators on generated instances

A comparison of the operators is presented in Table 1. For each scenario and each set of instances, Mean
cost represents the mean of the best solutions’ costs, Gap represents the gap between the scenario and the
’CL’ one according to the Mean cost value. Mean gap gives the mean of the gaps.

According to the Table 1, it appears that each category of created operators, associated with the classical
ones, permits to improve the best solutions. Despite the fact that the scenario only using the created
operators (FL + RS + WT) permits to reduce by 11.18% the cost of the best solutions, the best combination
seems to be the one using all the operators, which reduces by 12.03% the mean of the costs.

4.2 Real-World Instances

Current solution ALNS solution ∆
Instance TT CC TT CC TT CC

149 325 11 40 3516.16 60% 2220.62 60.90% -36.68% +0.90%
137 340 11 40 3580.28 62.33% 2489.19 66.22% -30.47% +3.89%
145 311 11 35 3051.96 71.69% 2103.80 81.06% -31.07% +9.37%
146 324 11 40 3034.67 64.45% 2173.90 76.26% -28.36% +11.81%

Mean 3295.77 64.62% 2151.6 71,11% -31.69% +6.49%

Table 2: Comparison of the current and ALNS solutions on real instances

A comparison of Alayacare’s current client solutions and ALNS’s solutions on 4 real instances is presented
in Table 2. According to Alayacare’s advices, we focus here on two major indicators, the total travel time
(TT ) and the continuity of care (CC, i.e., the percentage of visits for which the assigned caregiver visited
the patient in previous weeks).
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In each case, ALNS improves the solution, in terms of both total travel time and continuity of care. On
average, the ALNS reduces the total travel time by 31.69% and improves the continuity of care by 6.49%.

5 Conclusion

This project considers the HHCRSP in practical settings, taking into account all the industrial constraints.
We have developed a specialized version of the ALNS for this problem and introduced 5 efficient operators
(2 destroy and 3 repair). This approach improves Alayacare’s current client solutions as measured by two
major indicators: total travel time and continuity of care. The ALNS reduces the total travel time by more
than 31% and increases the continuity of care by more than 6%. The algorithm will be included in our
partner’s software in the near future.
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1 Abstract

Research shows that laboratory performance affects approximately 60% to

70% of the most critical medical decisions related to admission, discharge,

and the medication of inpatients (Da Rin, 2009). Phlebotomists are a key

part of these laboratory services. Phlebotomists primarily draw blood, urine,
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and other samples from patients and are in fact often the patients’ only

contact with medical laboratories. With an increasing demand for healthcare

services, the demand for phlebotomists is expected to grow 25% between 2014

and 2024 (Bureau of Labor Statistics, U.S. Department of Labor, 2016). With

the demand for healthcare workers at an all-time high (Mattice, 2016) and

healthcare dominating the American Staffing Associations Skills Gap Index,

a measure of the hardest to fill jobs (American Staffing Association, 2016),

it seems unlikely that the demand for phlebotomists can be met. Thus,

increasing the efficiency of phlebotomists will be crucial to avoid delays in

the admissions, discharge, and medication of patients.

With this need in mind, this study focuses on the intra-hospital routing

of phlebotomists. This study is specifically motivated by the Department of

Pathology at the University of Iowa Hospitals and Clinics (UIHC). At UIHC,

there is a team of phlebotomists that works in the morning and another team

that works later in the day. We focus on the morning shift as demand for

these phlebotomists is often greater than capacity. Typically, the morning

shift of phlebotomists works from 05:30am to 09:30am and serves 27 patient

units located in different buildings across UIHC. This team of phlebotomists

performs approximately 40% of the daily draws at UIHC.

When the phlebotomists arrive at work at 05:30, they can see the current

set of outstanding orders. These orders are certain and called “pre-orders.”

Additional orders that arrive randomly between 05:30 and 09:30 am are called

“add-ons.” As a result, the service time and the number of orders to be

served at a unit is random. The add-ons associated with a unit arrive before

a phlebotomist reaches a unit and while a until is being serviced. The latter
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case can be modeled as a queueing process because add-ons continue to arrive

even when a phlebotomist is in a unit serving patients. A phlebotomist

cannot leave a unit until all pre-orders and all add-ons, even those arriving

once service has begun, are served.

In this work, we seek to route the team of phlebotomists for a given day.

The objective is to maximize the expected number of orders served by the

morning shift. Because it may not be possible to serve all the demand by the

9:30am end of the morning shift, we view the problem as an orienteering prob-

lem. Because the rewards and service times are random, the intra-hospital

routing problem studied can be considered a variant of the team orienteer-

ing problem with stochastic rewards and service times (TOPSRST). While

motivated by phlebotomist intra-hospital routing, the problem described in

this study also has applications in airport screening and ticket inspection for

some local rail operations (Thorlacius et al., 2010; Yan et al., 2016).

To solve the problem, we propose an a priori routing approach or an a

priori policy. A priori policies are characterized by a priori routes or prede-

termined sequences of locations. In this research, an a priori policy requires

phlebotomists to visit patient units in the order specified by a set of pre-

defined routes. A priori policies handle uncertainty using what are called

recourse rules. In this problem, we require a recourse to handle the possi-

bility that we cannot serve all units by the end of the shift. In that case,

our recourse policy simply sends the phlebotomist back to the origin, earning

reward for just those patients served up to the end of the shift.

We also consider the case in which multiple phlebotomists are allowed to

serve a unit at the same time. A unit is said to be “swarmed” when a group of
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phlebotomists is scheduled to serve this unit. The advantage of swarming is

that it allows the phlebotomists to serve orders at a unit as fast as possible,

avoiding receiving and serving too many add-ons when phlebotomists are

present. UIHC currently uses this practice to ensure that some larger units

are served without sacrificing visits to smaller units.

To generate our a priori tours, we propose a variable neighborhood search

(VNS). Because of the queueing aspects of the problem, we cannot exactly

evaluate the value of a solution. However, we derive and demonstrate an

iterative monte-carlo sampling approach to provide estimates of the value.

We embed this sampling in our VNS.

This research makes the following contributions to the literature. First,

this paper is the first that formulate and solve a team orienteering problem

with stochastic rewards and service times, particularly one in which the re-

wards and service times are governed by a queueing process. Second, we

propose an a priori solution approach and derive an expression of the ob-

jective that leads to an iterative a priori sampling scheme that can be used

to estimate the value of a complicated objective function. Finally, using

data from UIHC, we demonstrate that the proposed approach can be more

effective than the approach currently used in practice.
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1 Motivation

People like to eat at home, but do not always like to prepare it. In a recent survey, 68% of survey

respondents reported ordering takeout at least once a month, with 33% ordering at least once a week

(Statista Survey, 2016). Seeking to satisfy this demand, recent years have a seen a surge in companies

that deliver restaurant meals to customers. These companies include startups like Grubhub, OrderUp!,

and UberEats. These companies offer customers the chance to place an order via a mobile application

or internet website and choose from the full menu of dozens of restaurants. The delivery is typically

promised between 30 to 40 minutes after the customer’s call and costs between $4 and $7 per delivery

(Macmillan, 2016). From May 2010 to May 2015, online orders in the US grew from approximately 400

million annually to over 900 million annually (NPD Group, 2015). Given this growth, it is estimated that

application-based delivery services will represent a multi-billion-dollar market in the coming years (Isaac,

2016).

While ordering from a delivery startup app is simple and convenient for consumers, the companies

providing these services face significant operational challenges. Customers want a reliable and fast service,

cooperating restaurants want their product served fresh, and drivers want to serve enough orders to make

a decent wage. Because late deliveries can make customers dissatisfied and not only less likely to use the

delivery service again, delivery companies need to assign drivers to orders with the goal of avoiding delay

(Maze, 2016).

With these operational challenges in mind, we introduce the Restaurant Delivery Problem (RDP).

The RDP is characterized by a fleet of delivery vehicles that serve dynamic customer requests over the

course of a day. The temporal distribution of customer requests is known, but no assumption is made on

the knowledge of customer locations. Customers make their requests (e.g an order for food) through a

mobile application or website choosing from a number of known providers (e.g. restaurants) throughout

their area. Once a request is placed, the order is immediately relayed to the provider who assigns it to

a driver who will pickup and deliver the order. The assignments of orders to drivers do not need to be

immediate and it is possible for a driver to be assigned multiple outstanding orders at one time (bundling).

Before delivery of an order, the driver must pickup the order from the appropriate restaurant. However,
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the time to prepare a customer’s food at each restaurant is random. While the delivery company knows

a distribution on the time, and perhaps even a time-dependent distribution, the driver does not know

exactly when the order will be ready. Thus, the driver may need to wait for the order’s completion when

arriving to a restaurant. Once the order has been retrieved, the driver delivers it to the customer who

expects her/his order to be delivered by a certain deadline. The objective is to minimize the expected

sum of positive differences between delivery times and delivery deadlines of orders over the service day.

To the best of our knowledge, this work is the first to address the RDP. In our talk, we will introduce a

dynamic policy for making assignments of orders to drivers. The policy considers both the postponement of

the assignment of an order to a driver and integrates a cost function approximation (CFA) to heuristically

account for uncertainty in both ready times and customer orders. We will conclude the talk by presenting

the results of a set of comprehensive computational tests that demonstrate the value of the proposed

solution approach.

2 Solution Approach

The RDP can be modeled as a Markov decision process (MDP). For the sake of space, we omit the details

of the model from this abstract. However, we note that at each decision point, we must determine what

orders to assign to what vehicles and how to route them as well as what orders to postpone. This decision

has both a subset selection component, as in an orienteering problem, as well as an assignment and routing

component as in a vehicle routing problem.

A solution for the RDP is a policy π ∈ Π assigning an action to each state. The optimal policy for

the RDP minimizes the expected costs c(Xπ
k (Sk)) of choosing an action Xπ

k when in state Sk and can be

expressed as

π∗ = arg min
π∈Π

E

[
K∑
k=0

c(Xπ
k (Sk))|S0

]
. (1)

Because of the curse of dimensionality, we are not able to solve for the optimal policy. Instead, we

solve Equation (1) approximately using a two-step procedure. First, we use heuristic solution methods to

significantly restrict the set of actions and therefore operate on a set of restricted policies Π̄ ⊂ Π. Second,

we use simulation of the information space to estimate Equation (1) for each policy. In the following, we

describe how we design the subset of policies Π̄ and how we conduct the simulation.

2.1 Restricted Policies

In the development of suitable policies for the RDP, we experience three major challenges. First, because

decisions need to be made in real-time, the time available for calculation is limited. Second, because

customer requests are random, myopic assignments may negatively impact the ability to serve later

requests. Third, the RDP contains an additional uncertainty in the ready times. Because the ready-time

distributions are usually long tailed, cost calculation based on mean values may lead to significant delay

for some customers. In the following, we describe how we address these three challenges and how we use



simulation to determine an overall policy.

Real-Time Decision Making: Decision Space Reduction

We accommodate fast decision making by reducing the action space through the use of an insertion routing

heuristic coupled with an assignment strategy based on a reduced subset selection. To implement this, we

maintain and update a set of planned routes Θ = (θ1, . . . , θm) throughout the horizon. At each decision

point, the routing heuristic inserts a set of open orders as follows. First, to insert a customer, the routing

heuristic determines the vehicle into whose route the order (and the restaurant) can be integrated with the

smallest increase in “myopic” cost. The cost C of inserting a customer in route θ is calculated myopically.

The arrival time a is calculated based on mean ready times and assuming no future requests. Given the

deadline d, the approximate increase in delay of a tour is

C(θ) =
∑

i:θi is Customer

max{0, a(θi)− d(θi)}. (2)

To account for sets of open orders, the routing heuristic generates a set of all potential sequences

of these open orders. For each ordered sequence, the heuristic subsequently applies the aforementioned

insertion method for each order. The heuristic selects that sequence minimizing the (myopic) sum of delay

for all vehicles.

Stochastic Requests: Postponements

In some cases, postponing assignments may lead to better decisions. Our postponement decisions are

determined by three indicators. First, we postpone requests not impacted by the immediate action of

our routing decision. This means that we do not postpone orders for which a vehicle is assigned to visit

the corresponding restaurant as the vehicle’s next stop. Second, to avoid multiple postponements of an

order, leading to a potentially large increase in computation time associated with the routing and subset

selection,, we limit the maximum amount of time an order is postponed. Third, because postponements

increase the number of open orders, we limit the overall number of postponed orders. The values for both

of these limits are set based on preliminary experiments.

Stochastic Ready Times: Temporal Buffers

The major challenge for the RDP is uncertainty in ready times. With the use of mean ready times, the

described routing and assignment strategy can result in many delays. Even though Equation (2) may

indicate no cost for a decision, the realization of ready times can lead to a delay. To address this, we

implement a cost-function approximation (CFA, Powell 2014) . The general idea of a CFA is to estimate

potential costs based on uncertainty by adding parameters in the cost calculation. To account for this, we

add a time buffer λ to the myopically calculated delay. To implement the CFA, we replace Equation (2)

with:

Cλ(θ) =
∑

i:θi is Customer

max{0, a(θi)− (d(θi) + λ)}.
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Figure 1: Comparison of Benchmarks to Proposed Approach

A buffer of zero results in Equation (2).

2.2 Policy Search via Simulation

The steps discussed in the previous section define a subset of policies Π̄ = {πλ : 0 ≤ λ ≤ tlimit} ⊂ Π,

where tlimit is the maximum amount of time between when an order is made and when it should be

delivered. Because of the different number of expected orders and ready time distributions, λ may vary for

different instance settings. Thus, we individually determine λ for each instance setting. We are not able to

determine the exact expected value for each policy and thus use simulation. To this end, we simulate 1000

trajectories for each policy πλ and select the policy minimizing the sum of delay over all simulation runs.

3 Results

We base our experiments on a delivery service based in Iowa City with 110 restaurants, 15 vehicles, and

more than 30,000 possible customer locations. We consider 42 different instance settings derived from

varying the coefficient of variation (COV) of the distributions of the ready times at restaurants, the

arrival rate of customers requests, and whether or not the ready times at restaurants are homogeneous

or heterogeneous. Once we have determined our parameters for an instance setting, we test the quality

of our approach by running 1000 trials. We compare the results of our approach with those of several

benchmarks.

Figure 1 presents the percentage difference between three benchmarks, n0, p0, and nbest, and the

solution method described in the previous section, using both postponement and the approximate cost

function. The n0 benchmark sets λ = 0 and does not allow postponement. By setting λ = 0, this

benchmark policy does not approximate the cost function. The p0 benchmark sets λ = 0, but allows

postponement. Again, this benchmark does not approximate the cost. Finally, nbest does not allow

postponement, but sets λ to the best found value for each of the 42 instance settings.

The results show that both postponing and approximating the cost can have dramatic improvements
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Figure 2: Difference in Sum of Delay between p0 and Proposed Approach by COV for 240 Customers

on solution quality. The results show that doing neither, n0, leads to solutions that are over 40% worse on

average. Only allowing postponement, p0, leads to solutions that are over 20% worse on average. The

best benchmark, nbest, is still 10% worse on average.

It is interesting to examine the impact of increasing variability on the solutions. Not surprisingly, the

sum of the delays for an instance increases as the COV increases regardless of what policy we choose.

However, the proposed CFA also has increasing value as the COV increases. Figure 2 presents the

difference in sum delay between p0 and the proposed approach by COV for instances with 240 expected

customers. The figure shows the increasing difference in the expected sum of delay. This increasing

difference demonstrates the danger of planning with the mean, even if using postponement, in a highly

variable and dynamic environment.

In our talk, we will also present results that the describe the proposed policy’s performance with regard

to the worst case delay, the delivery time, the freshness of the food upon delivery, and driver equity.
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